期刊文献+

求解Job Shop调度问题的自适应遗传算法设计

The Design of Adaptive Genetic Algorithms for the Solution of Job Shop Scheduling Problem
下载PDF
导出
摘要 针对标准遗传算法中交叉概率Pc和变异概率Pm固定不变带来的局限性,以及M.Sr-invivas自适应遗传算法的缺点,提出了根据适应值集中程度,自适应地变化整个种群的Pc和Pm的一种改进的自适应遗传算法,文中系统地介绍了算法的改进及算法的流程,并将算法应用于求解JSP问题,最后用一个典型的测试例子,对本文设计的算法的求解效果进行了测试,并对测试结果进行了分析. To overcome the limitation resulting from the fixed cross probability Pc and mutation probability Pm in standard genetic algorithm and the limitation in adaptive genetic algorithms, this paper proposes a revised adaptive genetic algorithm, which adaptively changes the whole population based on the fitness. First, an introduction of the revised algorithm and its process is given and the algorithm is applied to solve the job shop scheduling problem. And then, the result of the revised algorithm on a typical example is tested. Finally, the outputs of the test are analyzed.
作者 林碧 谢明红
出处 《佳木斯大学学报(自然科学版)》 CAS 2008年第4期530-534,共5页 Journal of Jiamusi University:Natural Science Edition
基金 福建省自然科学基金资助项目(E0640007)
关键词 作业车间调度 自适应遗传算法 Job Shop scheduling adaptive genetic algorithm
  • 相关文献

参考文献5

  • 1Cheng R., Gen M., Tsujimura Y., A Tutorial Survey of Job - shop Scheduling Problems Using Genetic Algorithms - Ⅰ. representation [J]. Computers & Industrial Engineering, 1996,30(4) :983 - 997.
  • 2Srinivas M., Patnaik I. M., Adaptive Probabilities of Crossover and Mntation in Genetic Algorithm[J]. IEEE Tram. On Systems,Man and Cybemetics. 1994,24(4) :656 - 667.
  • 3F. Herrera, M. Lozano. Fuzzy Adaptive Genetic Algorithms: Design, Taxonomy, and Future Directions[J]. Soft Computing, 2003,7(8) : 545 - 562.
  • 4J. M. Yang, C. Y. Kao, Integrating Adaptive Mutations and Family Competition into Genetic Algorithms as Function Optimizer[ J ]. SoftComputing,2000,4(7) :89 - 102.
  • 5高学金,王普,孙崇正,易建强,张亚庭,张会清.基于实数编码的自适应遗传算法及应用[J].北京工业大学学报,2007,33(2):144-149. 被引量:15

二级参考文献8

  • 1王凌,黄璇,郑大钟.一类带筛选策略的改进遗传算法及其性能分析[J].控制与决策,2004,19(11):1290-1293. 被引量:5
  • 2陈辉,张家树,张超.实数编码混沌量子遗传算法[J].控制与决策,2005,20(11):1300-1303. 被引量:41
  • 3VENKATRAMAN S,YEN G G.A generic framework for constrained optimization using genetic algorithms[J].IEEE Transactions on Evolutionary Computation,2005,9(4):424-435.
  • 4TU Zhen-guo,LU Yong.A robust stochastic genetic algorithm (StGA) for global numerical optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(5):456-470.
  • 5CHIU C C,HSU P L.A constraint-based genetic algorithm approach for mining classification rules[J].IEEE Transactions on SMC,2005,35(2):205-220.
  • 6SRINIVAS M,PATNAIK L M.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Transactions on SMC,1994,24(4):656-667.
  • 7DILETTOSO E,SALERNO N.A self-adaptive niching genetic algorithm for multimodal optimization of electromagnetic devices[J].IEEE Transactions on Magnetics,2006,42(4):1203-1206.
  • 8高玮.改进的快速遗传算法及其性能研究[J].系统工程与电子技术,2003,25(11):1427-1430. 被引量:41

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部