期刊文献+

基于密度聚类的模糊神经网络和CHP分解过程建模

Fuzzy Neural Network Design Based on Density Clustering and CHP Decomposing Process Model
下载PDF
导出
摘要 针对基于样本数据的复杂系统建模问题,提出了基于密度聚类的模糊神经网络(DFNN)的建模方法,研究了利用密度聚类原理提取数据样本的内在规则的理论和方法,提取的规则能较好地反映样本数据输入输出的对应联系,根据提取的规则给出了模糊神经网络的模型结构.本文以化工生产过程过氧化氢异丙苯(CHP)分解反应过程为对象进行仿真建模,结果显示在模型精度和可靠性上均优于基于c均值聚类提取规则的模糊神经网络模型(CFNN). According to modeling for complex systems only based on input - output data, a new building model of fuzzy neural network structure based on density clustering (DFNN) is presented. The author studied the theory, and method of density clustering, by which the inner rules about data , and relations between the data of inputs and outputs can be found. According to the rules, network structure was modified for better integration of them. Decomposing process of cumene hydroperoxide(CLIP) was sample model to build. Results showed that DFNN is better than fuzzy neural network based on c - means(CFNN) in precision and reliability.
作者 曹永成
出处 《佳木斯大学学报(自然科学版)》 CAS 2008年第4期539-541,566,共4页 Journal of Jiamusi University:Natural Science Edition
关键词 模糊神经网络 模糊推理 密度聚类法 c均值算法 CHP分解过程建模 fuzzy neural network fuzzy reasoning density clustering c - means CHP decomposing process model
  • 相关文献

参考文献4

二级参考文献31

  • 1Schaffcr J D,Whitley D, Eshclmen L J. Combinations of Gcnclic Algorithms and Neural Networks: A Survey of the State of the Art.Proceedings of the International Workshop on Combinalions of Genetic Algorithms and Neural Networks, Baltimore,1992,(6): 1-37.
  • 2Takagi T, Sugono M. Fuzzy Identification of Systems and Its Appfications to Modeling and Control[J]. IEEE Trans Syst. Man,and Cybern. SMC-15:116-132.
  • 3Sugeno M, Kang G T. Structure klentification of Fuzzy Model. Fuzzy Sets and System,1988,28(l):15-33.
  • 4Jang J S, Roger. Sesf-leaming Fuzzy Controller Based on Temponal Back-propagation. IEEE Trans Neural NetwoA,1992,3(5):714-723.
  • 5Jang J S ,Roger. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans Syst ,Man and Cybenn, 1993,23(1):665-685.
  • 6Liu P Y.Max-min Fuzzy Hopfield Neural Networks and an Efficient Learning Algorithm[J].Fuzzy Sets and Systems,2000,112(1):41-49.
  • 7James D,Donald W.Fuzzy Number Neural Networks[J].Fuzzy Sets and Systems,1999,108(1):49-58.
  • 8Hisao I,Manabu N.Numerical Analysis of the Learning of Fuzzified Neural Networks from Fuzzy IfThen Rules[J].Fuzzy Sets and Systems,2001,120(2):281-307.
  • 9Li Z Q,Kecman V,Ichikawa A.Fuzzified Neural Network Based on Fuzzy Number Operations[J].Fuzzy Sets and Systems,2002,130(3):291-304.
  • 10James D,Donald W.Fuzzy Regression by Fuzzy Number Neural Networks[J].Fuzzy Sets and Systems,2000,112(3):371-380.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部