摘要
雷达杂波的精确建模和仿真对雷达系统的优化设计起着重要作用。针对雷达杂波具有尖峰、非对称和重拖尾等非高斯特征,使用二元Rayleigh独立积和自由度为n的广义χ分布的随机变量进行级联,构造新的三元独立积随机变量。使用Mellin变换求得该随机变量的概率密度函数,其解析表达式含有Meijer G函数,故叫做G-分布杂波,并得到平方检波器接收的雷达杂波的概率密度函数。使用Markov扩散过程模型产生G-分布杂波的相关随机变量。仿真得到的随机序列的概率密度分布与理论值吻合很好。
High precision in modeling and simulation of radar clutter is very important to optimization de- sign of radar system. In order to model non-Gaussian signature of radar clutter, such as peaky, non-sym- metric probability, and density function (PDF) with heavy tail, the product of three independent random variables are obtained by using the product of two independent Rayleigh variables multiplied by a X dis- tributed random variable with n degrees of freedom. The PDF of the new random variable is derived by Mellin transform and Meijer G-function is utilized. The radar clutter is called G-distributed clutter, and the PDF of the clutter through a square detection filter is also derived. Markov diffusion processes are used to generate correlated random variables of G-distribution. The simulation results are similar to the theoretical value.
出处
《中国电子科学研究院学报》
2008年第4期355-360,共6页
Journal of China Academy of Electronics and Information Technology
基金
国家自然科学基金项目(60572024
60772061)
教育部博士点基金项目(200509230031)
江苏出入境检验检疫局科研项目(2008KJ11)
关键词
雷达杂波
独立积
非高斯分布
梅林变换
Meijer
G函数
radar clutter
product of independent random variables
non-Gaussian distribution
Mellin transform
Meijer G-function