期刊文献+

三元独立积构成的雷达杂波

A New Model of Radar Clutter Based on the Product of Three Independent Random Variables
下载PDF
导出
摘要 雷达杂波的精确建模和仿真对雷达系统的优化设计起着重要作用。针对雷达杂波具有尖峰、非对称和重拖尾等非高斯特征,使用二元Rayleigh独立积和自由度为n的广义χ分布的随机变量进行级联,构造新的三元独立积随机变量。使用Mellin变换求得该随机变量的概率密度函数,其解析表达式含有Meijer G函数,故叫做G-分布杂波,并得到平方检波器接收的雷达杂波的概率密度函数。使用Markov扩散过程模型产生G-分布杂波的相关随机变量。仿真得到的随机序列的概率密度分布与理论值吻合很好。 High precision in modeling and simulation of radar clutter is very important to optimization de- sign of radar system. In order to model non-Gaussian signature of radar clutter, such as peaky, non-sym- metric probability, and density function (PDF) with heavy tail, the product of three independent random variables are obtained by using the product of two independent Rayleigh variables multiplied by a X dis- tributed random variable with n degrees of freedom. The PDF of the new random variable is derived by Mellin transform and Meijer G-function is utilized. The radar clutter is called G-distributed clutter, and the PDF of the clutter through a square detection filter is also derived. Markov diffusion processes are used to generate correlated random variables of G-distribution. The simulation results are similar to the theoretical value.
出处 《中国电子科学研究院学报》 2008年第4期355-360,共6页 Journal of China Academy of Electronics and Information Technology
基金 国家自然科学基金项目(60572024 60772061) 教育部博士点基金项目(200509230031) 江苏出入境检验检疫局科研项目(2008KJ11)
关键词 雷达杂波 独立积 非高斯分布 梅林变换 Meijer G函数 radar clutter product of independent random variables non-Gaussian distribution Mellin transform Meijer G-function
  • 相关文献

参考文献19

  • 1[1]ANASTASSOPOULOS V,LAMPROPOULOS G A,DROSOPOULOS A,et al.High Resolution Radar Clutter Statistics[J].IEEE Trans on AES,1999,35(1):43-60.
  • 2赵巨波,符燕,耿文东.海杂波统计特性分析[J].现代雷达,2005,27(11):4-6. 被引量:29
  • 3张彦飞,关键,周伟,刘永.基于球不变随机过程的高分辨率雷达杂波仿真[J].现代雷达,2006,28(2):46-49. 被引量:7
  • 4[4]MARIER L J.Correlated K-distributed Clutter Generation for Radar Detection and Track[J].IEEE Trans on AES,1995,31(2):568-580.
  • 5[5]MELVIN W L,GUERCI J R.Knowledge-aided Signal Processing a New Paradigm for Radar and Other Advanced Sensors[J].IEEE Trans AES,2006,42 (3):983-996.
  • 6[6]SHIRYAEV A N.Probability[M].New York:Springer-Verlag,1996.
  • 7王颖,毛二可,韩月秋.相关K分布杂波的建模与仿真[J].信号处理,1997,13(2):141-146. 被引量:31
  • 8[8]SUZUKI H.A Statistical Model for Urban Radio Propagation[J].IEEE Trans.Commun.,1977,25(7):673-680.
  • 9[9]ERCEG V,FORTUNE S J,LING J,et al.Comparisons of a Computer-based Propagation Prediction Tool with Experimental Data Collected in Urban Mieroeellular Environments[J].IEEE J.Select.Areas Commun.,1997,15(4):677-684.
  • 10[10]KARAGIANNIDIS G K,TSIFTSIS T A,MALLIK R K.Bounds for Multihop Relayed Communications in Nakagamim Fading[J].IEEE Transactions on Communications,2006,54(1):18-22.

二级参考文献34

  • 1罗贤云,张忠治.地物雷达杂波空间相关特性的测量与分析[J].电波科学学报,1995,10(3):50-56. 被引量:7
  • 2米切尔RL 陈训达(译).雷达系统模拟[M].北京:科学出版社,1982..
  • 3Conte E.Modeling and simulation of non-rayleigh radar clutter[C].IEE Proceedings-F,1991,138(2):121-130
  • 4Memento C,Marco L,Giuseppe R.Fitting the exogenous model to measured data[J].IEEE Trans on Instrumentation and Measurement.1994,43(5):758-763
  • 5Wax M,Kailath T.Detection of signals by information theoretic criteria[J].IEEE Trans on Acoustic,Speech,Signal Processing,1985,33(2):387-392
  • 6Wax M,Ziskind I.Detection of the number of coherent signals by MDL Principle[J].IEEE Trans on Acoustic,Speech,Signal Processing,1989,37(8):1 190-1 196
  • 7Djuric P M.A model selection rule for sinusoids in white gaussian noise[J].IEEE Trans on Signal Processing,1996,44(7):1 744-1 751
  • 8Rangaswamy M.Computer generation of correlated Non-gaussian radar clutter[J].IEEE Trans on Aerospace and Electronic Systems,1995,31(1):106-116
  • 9Vershik A M.Some characteristic properties of gaussian stochastic processes[J].Theory of Prob and Its Appl,1964,9(3):353-356
  • 10Yao k.A representation theorem and its application to spherically invariant random processes[J].IEEE Trans on Information theory,1973,19(5):600-608

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部