期刊文献+

暴雨事件中两变量联合分布研究 被引量:4

下载PDF
导出
摘要 暴雨是包括年最大日雨量、降雨历时和相应的时段雨量等多个相关变量的水文事件。通过Copula函数分别构建年最大日雨量与时段雨量及降雨历时与时段雨量的联合分布。其中,年最大日雨量和时段雨量的边缘分布均为P-Ⅲ型分布,降雨历时的边缘分布服从指数分布。结果表明,年最大日雨量与时段雨量联合观测值的理论分布和经验频率拟合较好,降雨历时与时段雨量联合观测值的理论分布和经验频率也基本相符。在年最大日雨量、降雨历时及时段雨量的边缘分布和理论分布的基础上,推求两变量的联合概率分布及条件分布概率,然后推求相应的重现期。
出处 《人民长江》 北大核心 2008年第13期33-37,共5页 Yangtze River
基金 国家自然科学基金(50679063) 国家"十一五"科技支撑计划课题(2006BAC14B06)
  • 相关文献

参考文献11

  • 1Hashino M. Formulation of the joint return of period of two hydrologic variates associated with a Poisson process. Journal of Hydroscience and Hydraulic Engineering 1985, 3(2) :73 - 84
  • 2Singh K, Singh VP. Derivation of bivariate probability density functions with exponential marginals. Stochastic Hydrology and Hydraulics, 1991, (5): 55-68.
  • 3Bscchi B, Becciu G, Kottegoda NT. Bivariate exponential model applied to intensities and durations of extreme rainfall. Journal of Hydrology 1994, (155): 225-36.
  • 4Yue S. Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls. Hydrological Sciences Journal 2000, 45(2) :315-26.
  • 5Yue S. The Gumbel logistic model for representing a multivariate storm event. Advances in Water Resource, 2001, (24) : 179 - 185.
  • 6De Michele C, . Salvadori G. A Generalized Pareto intensity - duration model of storm rainfall exploiting 2 - copulas, Journal of Geophysical Research, 2003, 108(D2),4067.
  • 7Zhang L, Singh V P. Bivariate rainfall frequency distributions using archimedean copulas. Journal of Hydrology, 2007, 332:93 - 109.
  • 8Nelson R B. An introduction to Copulas. Springer, New York, 1999.
  • 9中华人民共和国水利部,能源部.水利水电工程设计洪水计算手册.北京:中国水利水电出版社,2001.
  • 10Zhang L, Singh V P. Bivariate rainfall frequency distributions using archimedean copulas. Journal of Hydrology, 2007, (332) :93 - 109.

二级参考文献12

  • 1韩义超,刘东.采用随机模拟技术与常规水文方法相结合的洪水过程模拟法[J].水文,1999,18(3):16-19. 被引量:11
  • 2中华人民共和国水利部,能源部.水利水电工程设计洪水计算手册[M].北京:中国水利水电出版社,2001.
  • 3Hashino M. Formulation of the joint return of period of two hydrologic variates associated with a Poisson process [J]. Journal of Hydroscience and Hydraulic Engineering 1985,(3-2): 73-84.
  • 4Singh K, Singh VP. Derivation of bivariate probability density functions with exponential marginals [J]. Stochastic Hydrology and Hydraulics 1991, (5) :55-68.
  • 5Bscchi B, Becciu G, Kottegoda NT. Bivariate exponential model applied to intensities and durations of extreme rainfall [J]. Journal of Hydrology 1994,155:225-36.
  • 6Yue Sheng, The gumbel mixed model applied to storm frequency analysis[J]. Water Resources Management, 2000, (14), 377-389.
  • 7Yue Sheng, The gumbel logistic model for representing a multivariate storm event [J]. Advances in Water Resource,2001 ,(24): 179-185.
  • 8Yue Sheng, The bivariate lognormal distribution for describing joint statistical properties of a multivariate storm event[J]. Environmentrics. 2002, (13): 811-819.
  • 9De Michele C, .Salvadori G. A generalized pareto intensity-duration model of storm rainfall exploiting 2-copulas, Journal of Geophysical Research, 108(D2),10.1029/2002JD002534, 2003.
  • 10Zhang L, Singh V P. Bivariate rainfall frequency distributions using archimedean copulas [J]. Journal of Hydrology 2007 332, 93-109.

共引文献23

同被引文献43

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部