期刊文献+

扩散模型产生相关均匀分布的随机变量 被引量:1

Correlated Uniform Random Variables Produced by a Diffusion Model
下载PDF
导出
摘要 相关均匀分布随机变量在通信和雷达系统仿真中有重要的应用价值.采用由随机微分方程(SDE)描述的Markov扩散模型的平稳分布,得到扩散模型中的漂移系数和扩散系数.然后利用均匀分布随机变量的近似pdf模型,产生相关均匀分布随机变量,避免了因取对数运算而导致在pdf取零值处漂移系数没有意义的缺陷.最后,通过仿真方法得到了相关均匀分布的随机变量,并讨论了该方法生成随机变量的一些性质. Correlated uniform random variables (URVs) play an important role in simulation of communication and radar systems. The stationary distribution of Markov diffusion model described by a stochastic differential equation (SDE) is used to obtain drift and diffusion coefficients. The approximate probability density function (pdf) model of URVs is used to generate URVs. The method can avoid the drawbacks when the drift coefficient becomes mean- ingless in taking logarithm of zero. Correlated URVs are obtained in simulation. Their characteristics are discussed in detail.
出处 《应用科学学报》 CAS CSCD 北大核心 2008年第4期354-357,共4页 Journal of Applied Sciences
基金 国家自然科学基金(No.60572024 No.60772061) 教育部博士点基金(No.200509230031) 江苏出入境检验检疫局科研项目(No.2008KJ11)资助项目
关键词 无线通信 衰落信道 扩散模型 均匀分布 wireless communications, fading channels, diffusion model, uniform distribution
  • 相关文献

参考文献11

  • 1RANGASWAMY M, WEINER D. Non-Gaussian random vector undentification using spherically invariant random process [J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 111- 123.
  • 2BEDE L, MUNSON D C. Generation of a random sequence giving a jointly specified marginal distribution and autocovariance [J]. IEEE Transactions on Audio and Speech Signal Processing, 1982, 30(6) : 973 -983.
  • 3SONDHI M M. Random processes with specified spectral density and first-order probability density [J]. Bell System Technical Journal, 1983, 62 : 679 - 700.
  • 4KONTOROVITCH V, LYANDRES V. Stochastic differential equations: an approach to the generation of continuous non-Gaussian processes [ J]. IEEE Transactions on Signal Processing, 1995, 43(10) : 2372 -2385.
  • 5KLEBANER F. Introduction to stochastic calculus with application [ M ]. London: Imperial College Press, 2001.
  • 6扈罗全,余瀚,朱洪波.有色噪声的扩散过程模型[J].中国电子科学研究院学报,2007,2(2):115-118. 被引量:3
  • 7KLOEDEN P E, PLATEN E, SCHURZ H. Numerical solution of SDE through computer experiments [M]. NY: Springer- Verlag, 1994, 6.
  • 8PRIMAK S, LYANDRES V, KAUFMAN O, KLIGER M. On the generation of correlated time series with a given probability density function [ J]. Signal Processing, 1999, 72 (2) :61 -68.
  • 9KONTOROVITCH V, LYANDRES V, PRIMAK S. The generation of diffusion Markovian processes with probability density function defined on part of the real axis [J]. IEEE Signal Processing Letters, 1996, 3 (1) : 19 - 21.
  • 10FIELD T R, TOUGH R J A. Dynamical models of weak scattering [J]. Journal of Mathematical Physics, 2005, 46(5) : 13302 - 13320.

二级参考文献9

  • 1[1]BEDE L,MUNSON D C.Generation of a Random Sequence Giving a Jointly Specified Marginal Distribution and Autocovarianee[J].IEEE Trans on ASSP,1982,30(6):973-983.
  • 2[2]SONDHI M M.Random Processes with Specified Spectral Density and First-order Probability Density[J].Bell System Technical Journal,1983,62:679-700.
  • 3[3]RANGASWAMY M,WEINER D.Non-Gaussian Random Vector Undentification Using Spherically Invariant Random Process[J].IEEE Trans on AES,1993,29(1):111-123.
  • 4[4]KONTOROVITCH V,LYANDRES V.Stochastic Differential Equations:an Approach to the Generation of Continuous Non-Gaussian Processes[J].IEEE Transactions on Signal Processing,1995,43(10):2372-2385.
  • 5[5]PRIMAK S,LYANDRES V,KAUFMAN O,et al.On the Generation of Correlated Time Series with a Given Probability Density Function[J].Signal Processing,1999,72(2):61-68.
  • 6[6]KLEBANER F.INTRODUCTION to Stochastic Calculus with Application[M].London:Imperial College Press,2001.
  • 7[7]KLOEDEN P E,PLATEN E,SCHURZ H.Numerical Solution of SDE Through Computer Experiments[M].New York:Springer-Vedag,1994.
  • 8扈罗全,王正斌.一种有重拖尾特性的G-分布海杂波模型[J].信号处理,2007,(待出版).
  • 9[10]SPRINGER M D,THOMPSON W E.The Distribution of Products of Independent Random Variables[J].Journal of the Society for Industrial and Applied Mathematics,1966,14(3):511-526.

共引文献2

同被引文献14

  • 1扈罗全,朱洪波.Langevin桥过程及其在脉冲无线信道建模中的应用[J].系统仿真学报,2007,19(7):1523-1526. 被引量:1
  • 2Jakes W C Jr.Microwave Mobile Communications[M].New York:Wiley,1974:37.
  • 3Molisch A F.Wireless Communications[M].England:Wiley,2005:136.
  • 4Kloeden P E,Platen E,Schurz H.Numerical Solution of SDE Through Computer Experiments[M].NY:Springer-Verlag,1994:91.
  • 5Klebaner F.Introduction to Stochastic Calculus with Application[M].London:Imperial College Press,2001:47.
  • 6Kontorovitch V,Lyandres V.Stochastic differential equations:an approach to the generation of continuous non-Gaussian processes[J].IEEE Tram on SP,1995,43(10):2372-2385.
  • 7Kwan R,Ho P,Leung C.On joint order statistics in correlated Nakasami fading channels[J].IEEE Commun Lett,2007,11 (9):717-719.
  • 8Willink T J.Wide-sense stationarity of mobile mIMO radio channels[J].IEEE Trarm on VT,2008,57(2):704-714.
  • 9Zhang Q T,Song S H.Exact expression for the coherence bandwidth of Rayleigh fading channels[J].IEEE Trans on Commun,2007,55(7):1 296-1 299.
  • 10Menemenlis N.Stochastic models for muhtipath fading channels[D].Canada:McGill University,2002:122.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部