期刊文献+

线性时变系统参数辨识的小波基函数展开

Expansion of Wavelet Basis Functions for Parameters Identification of Linear Time Varying System
下载PDF
导出
摘要 运用信号的基函数展开方法,以时变参数的AR模型为研究对象,采用具有时频局部特性的小波分解和重构滤波器作为基函数,获得对模型时变参数的辨识算法.利用周期延拓对信号边缘进行处理.忽略部分高频小波系数以克服小波重构层数对线性方程组求解的制约问题,获得模型阶数与最小重构层数的关系.研究发现,方法对时变参数的变化趋势及频率特征辨识有效,提高采样率可以改善被忽略的高频成分的影响,有助于辨识快变及瞬变参数的高频特征. By applying basis-functions expansion that uses wavelet decomposition and reconstruction filters and is rich in local time-frequency features, we introduce a novel algorithm identifying time varying parameters in TV-AR model. A periodical extension method for processing two terminals of signals is implemented. Some high frequency coefficients in the wavelet decomposition are neglected to overcome the restriction in solving linear equations by layer number of wavelet reconstruction and the relationship between the model order and the minimal layer nmnber of wavelet reconstruction. Research shows that the algorithm is effective in identifying the trend and frequency features of time-varying parameters. Increasing the sampling rate can reduce the effect of the neglected high frequency component, which is helpful to the identification the high frequency features of fast and instantaneous change signal.
出处 《应用科学学报》 CAS CSCD 北大核心 2008年第4期392-396,共5页 Journal of Applied Sciences
基金 国家自然科学基金资助项目(No.60543002)
关键词 基函数 时变参数 小波重构滤波器 最小重构层数 模型阶数 basis-function, time-varying parameters, wavelet reconstruction filter, minimal reconstruction layernumber, model order
  • 相关文献

参考文献10

  • 1KULHAR R. Restricted exponential forgetting in real-time identification[J]. Automatica, 1987, 23- 589-600.
  • 2AI-SHOSHAN, A I. LTV system identification using the time-varying autocorrelation function and application to audio signal discrimination [ C ]// 6th International Conference on Signal Processing Proceedings, Beijing: 239 - 242.
  • 3RAD A B, LOW L, TSANG K M. Simultaneous online identification of rational dynamics and time delay: a correlation rased approach [ J ]. IEEE Transactions on Control Systems Technology, 2005 ( 11 ): 957 - 959.
  • 4HACHINO T, TAKATA H. On-line identification of continuous-time nonlinear systems using radial basis function networks and immune algorithm [ C ]//Proceedings of the 5th International Conference on Control and Automation, Budapest Hungary, 2005:587 -592.
  • 5ZHAO He, LU Sheng, ZOU Rui, Ju K W, CHOW K H. Estimation of time-varying coherence function using time- varying transfer functions [ J ]. Annals of Biomedical Engineering,2005, 33( 11 ) : 1582 - 1594.
  • 6ZHENG Yuanjin, LIN Zhiping. Recursive adaptive algorithms for fast and rapidly time-varying state [ J ]. IEEE Transactions on Circuits and Systems Ⅱ-Analog and Digital Signal Processing, 2003, 50(9): 602-614.
  • 7SHEN Minfen, SONG Rong, TING K H, CHAN F H Y. A method for identifying non'Gaussian parametric model with time-varying coefficients [ C ]// 2003 IEEE International Conference on Acoustics, Speecfi, and Signal Processing, 2003, 6 : Ⅵ-629 - 32.
  • 8DORFAN Y, FEUER A, PORAT B. Modeling and identification of LPTV systems by wavelets [ J ]. Signal Processing, 2004, 84(8) : 1285 - 1297.
  • 9RIOUL O, VETrERLI M. Wavelet and signal processing [J]. IEEE Signal Processing, 1991, 8(4) : 14 -38.
  • 10徐南荣 宋文忠 夏安邦.系统辨识[M].南京:东南大学出版社,1991..

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部