摘要
统计降尺度方法是目前国内外研究气候变化的一个新途径。以汉江流域为例,选择全球气候观测NCEP再分析数据(1960~2000年)来率定和检验模型,利用主成分分析方法和多元线性回归模型建立大尺度GCMs模型的日降水统计降尺度方法,并应用全球气候模型CGCM2的A2气候情景来预测和分析汉江流域未来降水变化。相对于1961~2000年实测降水量均值,上游2001~2020、2121~2040年和中游2001~2020年的年降水量分别减少3.97%、4.85%和1,5%,其余统计时间年降水量大于实测值。
Statistical downscaling is a hot topic in the climate change research at present.For studying the future precipitation change in Hanjiang Basin,a large-size daily precipitation statistical downscaling model GCMs was proposed by using the multi-linear regression analysis and the principal component analysis method and the NCEP reanalysis data and the observation precipitation data(1960~2000) were used to calibrate the model.Based on the IPCC A2 scenario,the CGCM2 predictors were as input to the model to predict the precipitation change in future.Comparing to the period 1960~2000 the precipitation in the upper basin in period of 2001~2020 and 2021~2040 and in the middle basin in period of 2001~2020 will decrease by 3.97%,4.85%and 1.5% respectively.The results show that the daily precipitation statistical downscaling model can be further applied for predicting and analyzing the runoff change in Hanjiang basin in future.
出处
《人民长江》
北大核心
2008年第14期53-55,共3页
Yangtze River
基金
国家自然科学基金资助项目(50679063)
国际合作重点资助项目(2005DFA20520)
水资源与水电工程科学国家重点实验室开放基金资助项目(2006C015)
湖北省自然科学基金资助项目(2007ABA061)
关键词
气候变化
统计学降尺度
主成分分析
降水
汉江流域
climate change
statistical downscaling
principal component analysis
Hanjiang river basin.