期刊文献+

带有扩散的捕食与被捕食系统的周期解的存在性(英文) 被引量:1

Existence of Periodic Solutions for Predator-Prey System with Dispersion
下载PDF
导出
摘要 研究了一类非自治食饵种群在两个斑块之间扩散的捕食与被捕食系统,同时捕食种群固定在一个斑块不会扩散.运用叠合度的方法得到了正周期解的全局存在性的充分条件. This paper introduces a nonautonomous predator-prey model in which prey species can disperse between two patches, while the predator species is confined to one patch and cannot disperse. A set of easily verifiable sufficient conditions are derived for the global existence of periodic solutions with strictly positive components by using the method of coincidence degree.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2008年第3期329-333,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 The NNSF of China(10471117) The Youth Science Foundation of Xinyang Normal University(20070209) The NSF of Educational Department of Henan Province(2007110028)
关键词 正周期解 捕食与被捕食系统 叠合度 扩散 positive periodic solutions predator-prey system coincidence degree dispersion
  • 相关文献

参考文献12

  • 1Cushing J M. Periodic Time-dependent Predator-prey System[ J]. SIAM J Appl Math (S0036-1399), 1977,37:82-95.
  • 2Kuang Y. Delay Differential EquationJ with Application in Population Dynamics [ J]. Mathematics and Computers in Simulation (S0378-4754), 1993,35 (5) :452-453.
  • 3Beretta E,Kuang Y. Convergence Results in a Well Known Delayed Predator-prey System[J]. Math Anal Applic(S0036-1410) ,1996,204:840- 853.
  • 4Leung A. Periodic Solutions for Prey-predator Differential Delay Equation[ J]. J Differential Equations(S0022-0396) ,1977,26(3) :391-403.
  • 5Wei F Y, Wang K. Global Stability and Asymptotically Periodic Solution for Nonautonomous Cooperative Lotka-Volterra Diffusion System[ J]. Applied Mathematics and Computation ( S0096-3003 ) ,2006,182 ( 1 ) : 161-165.
  • 6Yamada Y. Positive SolutionJ for Lotka- Volterra Competition System with Diffusion [ J ]. Nonlinear Analysis ( S1751-570X ), 2001,47 ( 9 ) : 6085- 6096.
  • 7Lu Z Y,Takeuchi Y. Permanence and Global Stability for Cooperative Lotka-Volterra Diffusion Systems [ J ]. Nonlinear Analysis( S1751-570X), 1992,19(10) :963-975.
  • 8Takeuchi Y. Global Stability in Generalized Lotka-Volterra Diffusion System[J]. J Math Anal Applic(S0036-1410) ,1986,116:209-221.
  • 9Song X Y,Chen L S. Persistence and Global Stability for Nonautonomous Predator-prey System with Diffusion and Time Delay[ J]. Computers & Mathematics with Applications( S0898-1221 ) ,1998,35(6) :33-40.
  • 10Song X Y, Chen L S. Harmless Delays and Global Attractivity for Nonautonomous Predator-prey System with Dispersion[ J]. Computers & Mathematics with Applications( S0898-1221 ) ,2000,39 (6) :33-42.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部