期刊文献+

基于BP神经网络的竹林遥感监测研究 被引量:8

Remote sensing image based bamboo forest monitoring with a back propagation(BP) neural network
下载PDF
导出
摘要 竹林信息提取对利用遥感技术估算竹林碳储量至关重要,高精度地提取竹林信息将有利于降低碳储量估算误差。借助Matlab神经网络模块,采用BP神经网络(back propagation neural network)对ETM+(enhanced themativ mapper plus)遥感影像提取竹林信息,得到了较高的精度,生产精度和用户精度分别为84.04%和98.75%;同时比较了Levenberg-Marquardt BP算法函数(Trainlm)、自适应学习率BP的梯度递减函数(Traingda)和梯度下降动量BP算法函数(Traingdm)等3种训练函数在分类中的差异。分析表明,Traingda算法函数分类精度最高,而Trainlm算法函数的训练时间最短。 To estimate the carbon content of bamboo forest based on remote sensing, highly accurate data acquisition is necessary to reduce estimation errors. In this study, enhanced thematic mapper plus(ETM+) remote sensing data was used to extract bamboo forest data using a back propagation (BP) neural network. Matlab program language(Version 7.1) was used to compile the classification algorithm with algorithms of three training functions being compared; namely, Traingda-gradient descent backpropagation with adaptive learning rate backpropagation; Trainhn-levenberg-marquardt backpropagation; and Traingdm-gradient descent with naonaentum backpropagation. Results showed that for bamboo forest the BP neural network had a high classification accuracy with a producer accuracy of 84.0% and a user accuracy of 98.7%. Meanwhile, of the three different training functions Traingda had the highest classification accuracy, whereas Trainhn had the shortest training time.
出处 《浙江林学院学报》 CAS CSCD 北大核心 2008年第4期417-421,共5页 Journal of Zhejiang Forestry College
基金 国家自然科学基金资助项目(30700638 30771725)
关键词 森林经理学 BP神经网络 竹林 分类 遥感 ETM+ forest management back propagation (BP) neural network bamboo forest classification remote sensing enhanced thematic mapper plus (ETM+)
  • 相关文献

参考文献14

二级参考文献51

共引文献132

同被引文献94

引证文献8

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部