期刊文献+

一种单输入/单输出的小脑模型神经网络研究

A single input-single output cerebllar model articulation controller
下载PDF
导出
摘要 针对标准小脑模型关联控制器(CMAC)存在的问题,研究了一种单输入单输出(SISO)的CMAC算法.SISO CAMC采用直接地址映射,以输入v的量化值为地址,建立起输入v与权重w的关系,并通过对输入v进行归一化,增强网络的泛化能力.另外,学习采用随机样本,具有学习简单、收敛速度快、函数逼近精度高等特点,可以在单片机上实现.最后,理论证明和仿真试验,验证了该算法的有效性. Taking into account some flaw in the conventional Cerebllar Model Articulation Controller (CMAC), a Single Input-Single Output CMAC Algorithm (SISO CMAC) is researched. The direct weight address mapping techniques are used in the Algorithm, and the relation between the inputs and the weights is established by taking the quantification of input v as their weight address, and the generalization capability of network is enhanced by input v normalizing. The study of network uses random sampling, so the network has characteristics of simple study and quick convergence and high accuracy of function approximation, etc, and can be implemented in single chip microcomputer. In the end, the Algorithm is proved effectively by theories and simulation experiments.
作者 夏辉 金京犬
出处 《安徽工程科技学院学报(自然科学版)》 CAS 2008年第2期42-46,共5页 Journal of Anhui University of Technology and Science
关键词 小脑模型关联控制器 单输入/单输出 直接映射 仿真 cerebllar model articulation controller single input-single output direct mapping simulation
  • 相关文献

参考文献8

  • 1Chih-Min Lin,Ya-Fu Peng. Adaptive CMAC-Based Supervisory Control for Uncertain Nonlinear Systems[J]. IEEE Trans. Syst. , Man, Cybern, B, Cybern,2004, 34(2):1 248-1 260.
  • 2T-F Wu, P-S Tsai, F-R Chang. Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation[J].IEE Proc. --Control Theory Appl. , 2006,153(6):647- 657.
  • 3C-P Hung. Integral variable structure control of nonlinear system using a CMAC neural network learning approaeh [J]. IEEE Trans. Syst. ,Man, Cybern. B, Cybern. ,2004,34(1):702 - 709.
  • 4刘清,沈祖诒,王柏林.基于CMAC的非线性逆滤波改善传感器的动态特性[J].控制理论与应用,2005,22(5):758-761. 被引量:4
  • 5Ya-Fu Peng, Rong-Jong Wai, Chih-Min Lin. Implementation of LCC-Resonant Driving Circuit and Adaptive CMAC Neural Network Control for Linear Piezoelectric Ceramic Motor[J]. IEEE Trans. Indus. Elecr. , 2004,51 (1) : 35 -47.
  • 6Shun-Feng Su, Zne-Jung Lee, Yan-Ping Wang. Robust and Fast Learning for Fuzzy Cerebellar Model Articulation Controllers[J]. IEEE Trans. Syst. , Man, Cybern. B, Cybern., 2006,36(1):203-208.
  • 7S. D. Teddy, E. M.-K. Lai. Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence [J]. IEEE Trans. Neural Networks, 2007,18(6):1 658- 1 682.
  • 8Chun Shin Lin, Chin Tsan Chiang. Learning Convergence of CMAC Technique[J]. IEEE Trans. Neural Networks, 1997,8(6) :1 281 -1 292.

二级参考文献6

  • 1DE ALMEIDA L A L,DEEP G S,LIMA A M N, et al. A hysteretic model for a vanadium dioxide transition-edge microbolometer [J]. EEE Trans on Instrumentation Measurement, 2001,50(4): 1030 - 1035.
  • 2PATRA J C, KOT A C,PANDA G. An intelligent pressure sensor using neural networks [J]. IEEE Trans on Instrumentation and Measurement ,2000,49(4) :829 - 834.
  • 3HORVATH G, SZABO T. CMAC neural network with improved generalization property for system modeling [C]∥Proc of the 20th IEEE Instrumentation and Measurement Technology Conference, Anchorage, Alaska, USA: IEEE Press, 2003:1603 - 1608.
  • 4LIN Chun-shin, CHIANG Ching-Tsan. Learning Convergence of CMAC Technique [J]. IEEE Trans on Neural Networks, 1997, 8 (6): 1281 - 1292.
  • 5罗忠,谢永斌,朱重光.CMAC学习过程收敛性的研究[J].自动化学报,1997,23(4):455-461. 被引量:26
  • 6庄哲民,黄惟一,刘少强.提高传感器精度的神经网络方法[J].计量学报,2002,23(1):78-80. 被引量:23

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部