期刊文献+

基于表面形貌空间频率特征的AFM操作模式(英文) 被引量:1

An AFM's Operation Mode Based on Spatial Frequency Characteristics of Surface Profile
下载PDF
导出
摘要 恒力模式和恒高模式是原子力显微镜的两种主要操作模式.前一种模式通常用于成像在垂直方向变化大的表面,但仅对低空间频率表面有效.后一种模式仅对光滑表面在高分辨率高扫描速度下的成像有用.为克服这些缺点,提出了组合恒高和恒力的新操作模式.使用这个模式,表面形貌的低空间频率成分利用垂直压电扫描器及其控制信号跟踪并测量,高空间频率成分利用悬臂信号测量.然后,表面形貌图像利用组合低频和高频成分得到.仿真结果证明了这种新的操作模式具有高速和高分辨率的优点. Atomic force microscope (AFM) is operated in two principal modes, constant-force mode and constant-height mode. The former one is usually used for rougher surfaces in vertical direction but it is valid only for the low spatial fre- quency surface, while the latter one is only particularly useful for imaging smoother surfaces with high resolution and high scan speed. To overcome these shortcomings, a new operation mode combining constant-height and constant-force mode was proposed in this paper. Using the combined operation mode, the low spatial frequency component of surface profile was tracked and measured by the vertical piezoscanner and the compensating control signal; and the high spatial frequency com- ponent was measured by cantilever signal. Then the image of surface profile was acquired by combining the low-frequency and high-frequency components. Simulation results demonstrate that the combined operation mode has the advantages of high speed and high resolution.
出处 《纳米技术与精密工程》 EI CAS CSCD 2008年第4期293-296,共4页 Nanotechnology and Precision Engineering
基金 中国留学生基金委员会和美国国家标准与技术研究院(NIST)资助项目
关键词 原子力显微镜 操作模式 线宽测量 空间频率 atomic force microscope (AFM) operation mode linewidth measurement spatial frequency
  • 相关文献

参考文献2

二级参考文献25

  • 1[1]Dziomba T,Koenders L,Wilkening G.Towards a Guideline for SPM Calibration,Nanoscale Calibration Standards and Methods:Dimensional and Related Measurements in the Micro and Nanometer Range [M].Edited by Wilkening G,Koenders L.Wiley-VCH Verlag GmbH,2005.173-192.
  • 2[2]Bienias M,Gao S,Hasche K,et al.A metrological scanning force microscope used for coating thickness and other topographical measurements [J].Appl Physics A,1998,66:837-842.
  • 3[3]Dai G,Pohlenz F,Danzebrink H U,et al.Improving the performance of interferometers in metrological scanning probe microscopes[J].Meas Sci Technol,2004,15:444-450.
  • 4[4]Dixson R,Koning R,Fu J,et al.Accurate dimensional metrology with atomic force microscopy[J].Proc SPIE,2000,3998:362-368.
  • 5[5]Picotto G B,Pisani M.A sample scanning system with nanometric accuracy for quantitative SPM measurements [J].Ultramicroscopy,2001,86:247-254.
  • 6[6]Gonda S,Doi T,Kurosawa T,et al.Real-time,interferometrically measuring atomic force microscope for direct calibration of standards[J].Rev Sci Instrum,1999,70(8):3362-3368.
  • 7[7]Haycocks J,Jackson K.Traceable calibration of transfer standards for scanning probe microscopy [J].Precision engineering,2005,29:168-175.
  • 8[8]Koops K R,Dirscherl K.Nanometrology standards in the Netherlands:the traceable scanning probe microscope [A].In:Proc of 3trd Euspen Conference [C].Eindhoven,Netherlands ,2002:525-528.
  • 9[9]Meli F,Thalmann R.Long-range AFM rofiler used for accurate pitch measurements [J].Meas Sci Technol,1998,9:1087-1092.
  • 10[10]Haβler-Grohne W,Bosse H.Electron optical metrology system for pattern placement measurements [J].Meas Sci Technol,1998,9:1120-1128.

共引文献8

同被引文献12

  • 1Orji N G, Martinez A, Dixson R G, et al. Progress on imple- mentation of a CD-AFM-based reference measurement system [ C ]// Proceedings of SPIE--The International Society For Optical Engineering. San Jose, United States, 2006: 615200- 1-12.
  • 2Mahmood I A, Moheimani S O. Making a commercial AFM more accurate and faster using positive position feedback con- trol [ J ]. Review of Scientific Instruments, 2009, 80 ( 6 ) : 063705-1-8.
  • 3Kwon J, Hong J, Kim Y S, et al. Atomic force microscope with improved scan accuracy, scan speed, and optical vision [J]. Review of Scientific Instruments, 2003, 74(10) : 4378- 4383.
  • 4Prunici P, Hess P. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs [J]. Ultramicroscopy, 2008, 108(7) : 642-645.
  • 5Gonda S, Kinoshita K, Noguchi H, et al. AFM measurement of linewidth with sub-nanometer scale precision [ J ]. Progress in Biomedical Optics and Imaging Proceedings of SPIE, 2005, 5752( 1 ) :156-162.
  • 6Dai G L, Koenders L, Pohlenz F, et al. Accurate and tracea- ble calibration of one-dimensional gratings [ J ]. Measurement Science and Technology, 2005, 16(6) : 1241-1249.
  • 7Paulo A S, Garc6 R. High-resolution imaging of antibodies by tapping-mode atomic force microscopy: Attractive and repul- sive tip-sample interaction regimes [J]. Biophysical Journal, 2000, 78(3) : 1599-1605.
  • 8Reich Z, Kapon R, Nevo R, et al. Scanning force microscopy in the applied biological sciences [ J ]. Biotechnology Ad-vances, 2001, 19(6) : 451- 485.
  • 9Jusko O, Zhao X, WOlff H, et al. Design and three dimen- sional calibration of a measuring scanning tunneling micro- scope for metrological applications[ J]. Review of Scientific In- struments, 1994, 65(8): 2514-2518.
  • 10李宁,赵学增,褚巍,李洪波.基于AFM的刻线边缘粗糙度幅值与空间频率的表征方法[J].纳米技术与精密工程,2008,6(5):367-371. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部