期刊文献+

应用SELDI-TOF-MS技术建立小肾癌的血清蛋白质谱筛选模型

Proteomic analysis of serum identifies protein changes present in small renal cell carcinoma using surface enhanced laser desorption/ionization mass spectrometry
下载PDF
导出
摘要 目的探讨SELDI-TOF-MS技术在小肾癌的筛查诊断中的应用。方法收集了111例血清标本,分别为小肾癌患者30例,肾脏良性肿瘤34例,健康人47例。应用SELDI-TOF-MS技术获得所有患者的IMAC-Cu2+蛋白芯片的表达图谱,随机采用19例小肾癌患者和26例健康人的血清蛋白质谱建立决策树模型,并用其余11例小肾癌患者和21例健康人进行双盲验证;再随机采用21例小肾癌患者和16例肾脏良性肿瘤患者的血清蛋白质谱建立决策树诊断模型,并用余下9例小肾癌和18例肾脏良性肿瘤患者的血清标本进行双盲验证。结果小肾癌与健康人的决策树诊断模型的敏感性和特异性均为100%,双盲验证后的敏感性和特异性分别为81.8%(9/11)和100%(21/21)。小肾癌与肾脏良性肿瘤的决策树诊断模型的敏感性为95.2%(20/21),特异性为100%(16/16),双盲法验证后的敏感性为77.8%(7/9),特异性为88.9%(16/18)。结论本次试验中建立的两个决策树有望通过进一步的验证用于肾癌的早期诊断和鉴别诊断中。在质荷比分别为15282.4、4215.96这2个蛋白峰中可能会发现肾癌的特异性肿瘤标记物。 Objective To identify the proteomic changes in small (≤3 cm in diameter) renal cell carcinoma (RCC) using surface enhanced laser desorption/ionization mass spectrometry technology. Methods One hundred and eleven serum samples were collected, including 30 small RCC cases, 34 renal benign mass cases and 47 healthy persons. The samples were analyzed using IMAC-Cu^2+ ProteinChip system by SELDI-TOF-MS technology. Two decision trees were generated by Biomark Pattern 5.0.2 software to distinguish small RCC cases from healthy persons and from benign renal masses cases, respectively. Double blind confirmation was applied to each decision tree. Results Both the sensitivity and specificity of the decision tree, which distinguishes small RCC cases from healthy persons, were 100%. The sensitivity and specificity of double blind confirmation procedure were 81.8% (9/11) and 100%(21/21), respectively. The sensitivity and specificity of the second decision tree, which distinguish small RCC cases from benign renal masses cases, were 95.2 % (20/21) and 100% (16/16), respectively. After the double blind confirmation, the sensitivity and specificity were 77.8%(7/9) and 88.9% (16/18), respectively. Conclusions Two decision trees have been established in this experiment, which can hopefully be used for early diagnosis and deferential diagnosis of small RCC. Potential biomarkers of RCC can possibly be found from 2 proteins with molecular masses of 15 282.4 and 4 215.96.
出处 《复旦学报(医学版)》 CAS CSCD 北大核心 2008年第4期564-568,共5页 Fudan University Journal of Medical Sciences
关键词 肾癌 蛋白质组学 血清 诊断 renal cell carcinoma proteomics serum diagnosis
  • 相关文献

参考文献14

  • 1Weiss RH, Lin PY. Kidney cancer: identification of novel targets for therapy[J].Kidney Int ,2006,69(2) :224 - 232.
  • 2Zhang Z, Bast Jr RC, Yu Y,et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer[J]. Cancer Res ,2004,64(16):5 882 - 5 890.
  • 3Li J, Zhang Z, Rosenzweig J, et al. Proteomics and bioinformatics approaches for identification of biomarkers to detect breast cancer[J].Clin Chem, 2002,48 (8):1 296-1 304.
  • 4Adam BL, Qu Y, Davis JW,et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men[J]. Cancer Res ,2002,62(13) :3 609- 3 614.
  • 5Chen YD, Zheng S, Yu JK,et al. Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population[J]. Clin Cancer Res, 2004,10 (24):8 380 - 8 385.
  • 6Tolson J,Bogumil R, Brunst E,et al. Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients[J]. Lab Invest ,2004,84(7):845 - 856.
  • 7Won Y,Song H J, Kang TW, et al. Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons[J]. Proteomics, 2003,3 (12):2 310-2 316.
  • 8张锐强,谢静,刘振元,张玉石,李汉忠,邓碧萍,李宁,王彭.血清蛋白质指纹图谱模型在肾癌诊断中的应用[J].中华泌尿外科杂志,2006,27(8):527-529. 被引量:8
  • 9吴登龙,王文静,关明,金三宝,金重睿,张元芳.表面增强激光解吸/离子化质谱蛋白质芯片技术在筛选肾癌患者尿液标记物中的应用[J].中华医学杂志,2004,84(13):1092-1095. 被引量:22
  • 10Hara T, Honda K, Ono M, et al. Identification of 2 serum biomarkers of renal cell carcinoma by surface enhanced laser desorption/ionizationmass spectrometry[J]. J Urol, 2005, 174(4 Pt 1):1 213- 1 217.

二级参考文献22

  • 1吴登龙,王文静,关明,金三宝,金重睿,张元芳.表面增强激光解吸/离子化质谱蛋白质芯片技术在筛选肾癌患者尿液标记物中的应用[J].中华医学杂志,2004,84(13):1092-1095. 被引量:22
  • 2王英,邓碧萍,马龙华,许洋,张自森,刘芳,毛友生,张金生,张德超,赵晓航.食管鳞癌血清WCX2蛋白芯片诊断模型的研究[J].中华检验医学杂志,2004,27(10):634-637. 被引量:24
  • 3Fields S. Proteomics in genomeland. Science, 2001,291:1221-1224.
  • 4Pandey A,Mann M. Proteomics to study genes and genomes. Nature,2000, 405:837-846.
  • 5Sarto C, Frutiger S, Cappellano F, et al. Modified expression of plasma glutathione peroxidase and manganese superoxide dismutase in human renal cell carcinoma. Electrophoresis,1999, 20 :3458-3466.
  • 6Balabanov S, Zimmermann U, Protzel C, et al. Tumour-related enzyme alterations in the clear cell type of human renal cell carcinoma identified by two-dimensional gel electrophoresis. Eur J Biochem,2001, 268:5977-5980.
  • 7Klade CS, Voss T, Krystek E, et al. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics, 2001, 1:890-898.
  • 8Ferrari L, Seraglia R, Rossi CR, et al. Protein profiles in sera of patients with malignant cutaneous melanoma. Rapid Commun Mass Spectrom, 2000,14: 1149-1154.
  • 9Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis,2000, 21:1164-1177.
  • 10Bryumor W, Robert S, Shannon B, et al. Detection of early-stage cancer by serum protein analysis. Am Laboratory, 2001,6:32-36.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部