期刊文献+

一种全并行神经网络参数辨识方法

A New Parallel Identification Method UsingNeural Networks
下载PDF
导出
摘要 针对在线参数辨识计算工作量大,造成难以实时给出参数估值的问题,利用Hopfield型网络的快速优化计算能力,通过对Hopfield网络改进,推出了一种全并行递推神经网络参数辨识方法,使计算量较传统的参数辨识方法大大减小。同时由于神经网络的互连作用,增强了辨识的鲁棒性,为实时给出参数估值提供了可靠的保障。 It is necessary for a control engineer to apply adaptive control to automatic pilot of a navigator to catch up with its development. The parameters of controlled system must be identified online to control the navigator adaptively in many cases, but existing serial identification method can not meet the realtime requirement of online identification. A new parallel method for on[CD*2]line parameter identification by neural networks is proposed in this paper to realize the realtime identification. The Hopfield Networks is modified by replacing its sigmoidal function with multilinear function, and then the link matrix and bias of the modified networks are set according to eq.(9) to guarantee the stability of the networks and to guarantee that the only one equilibrium of the networks be the least squares solution of the parameter identification. In order to meet the requirement of online identification, the recurrence formula, eq.(12), is given. The simulation results of an underwater vehicle system with the new method show the validity of the method through comparison with the results obtained with traditional least squares identification method.
机构地区 西北工业大学
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 1997年第2期244-248,共5页 Journal of Northwestern Polytechnical University
关键词 参数辨识 神经网络 并行辨识 鲁棒性 最小二乘法 parameter identification, neural networks, parallel identification
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部