期刊文献+

含醇溴化锂水溶液汽液界面的分子模拟 被引量:3

Molecular modeling at liquid-vapor interface of lithium bromide aqueous solutions with alcohols surfactants
原文传递
导出
摘要 为研究界面活性剂在溴化锂吸收机组中对吸收过程的强化机理,采用分子动力学方法模拟303 K时的水、质量分数为60%的溴化锂水溶液以及分别添加不同量的乙醇、正辛醇(1-octanol)、仲辛醇(2-octanol)、异辛醇(2-ethyl-1hexanol)的水或溴化锂水溶液的汽液界面,并且分别对其密度分布、微观结构进行研究,计算分别添加上述醇类的溴化锂水溶液的汽液界面张力,计算结果与实验值相符.模拟结果显示:正辛醇、仲辛醇、异辛醇分子吸附在汽液界面并在界面处呈优势取向,即疏水烃基指向气相,亲水羟基指向液相;醇分子的亲水基尽可能多地趋向水分子,二者在界面处以氢键相互作用;醇分子的添加量为某一特定范围时,醇分子的烃基链在界面处产生较大摆动. To investigate the strengthening mechanism of certain surfactant additives on the heat and mass transfer process in absorption, molecular dynamics simulations were carried out to study the longitudinal density profile and microstructure of the liquid-vapor interface of pure water, lithium bromide aqueous solutions with the mass fraction of 60%, and water or lithium bromide aqueous solutions with various concentrations of ethand, 1-octanol, 2-octanol and 2-ethy-1-hexanol at 303K, respectively. The surface tension of liquid-vapor interface of lithiurn bromide aqueous solutions with the above alcohols was calcu-lated respectively, and the calculated value conformed with the experimental data. The simulation results show that 1-octanol, 2-octanol or 2-ethy-1-hexanol molecules tend to absorb at the interface, showing their dominant orientation with the hydrophobic hydrocarbyl pointing into the vapor phase and with the hydrophilic hydroxyl pointing into the liquid phase, while the hydroxyl groups form a hydrogen bonding network with water which make the alcohol molecules seek more hydrophilic interactions with water molecules. The hydrocarbon chains can make large swing at the interface when the addition of alcohol molecules is in a certain range.
出处 《大连海事大学学报》 EI CAS CSCD 北大核心 2008年第3期29-33,共5页 Journal of Dalian Maritime University
基金 国家自然科学基金资助项目(50476038) 教育部留学回国人员科研启动基金资助项目([2005]383号) 大连市留学回国人员科研基金资助项目(2004)
关键词 界面活性剂 汽液界面 分子模拟 界面张力 密度分布 surfaetant additives liquid-vapor interface molecular dynamics simulation surface tenion density profile
  • 相关文献

参考文献9

  • 1KULANKARA S, HEROLD K. Surface tension of aqueous lithium bromide with heat/mass transfer enhancement additives: the effect of additive vapor transport[J]. Int J Refrig, 2002, 25: 383-389.
  • 2程文龙,陈则韶.添加剂对LiBr溶液吸收蒸汽过程中的强化机理[J].Chinese Journal of Chemical Physics,2004,17(2):179-185. 被引量:14
  • 3高洪涛,飞原英治.气相界面活性剂对溴化锂水溶液吸收水蒸气的影响[J].工程热物理学报,2005,26(3):391-393. 被引量:13
  • 4高洪涛.界面活性剂的混合添加对溴化锂溶液表面张力及吸收水蒸气的影响[J].工程热物理学报,2007,28(3):385-387. 被引量:8
  • 5MYERS D. Surfaces, Interfaces and Colloids: Principles. and Applications [ M]. 2nd edition. New York: Wiley, 1999.
  • 6CHEN F, SMITH P E. Simulated surface tensions of common water models[J]. J Chem Phys, 2007, 126, 221101- 1-221101-3.
  • 7JEDLOVSZKY P, VARGA I, GILANYI T. Adsorption of 1-octanol at the free water surface as studied by Monte Carlo simulation[J]. J Chem Phys, 2004, 120 (24): 11839- 11851.
  • 8DAIGUJI H. Molecular dynamics study of n-alcohols adsorbed on an aqueous electrolyte solution[J]. J Chem Phys, 2001, 115(4) :1538-1549.
  • 9SPOEL D, LINDAHL E, HESS B, et al. GROMACS: fast, flexible and free [ J ]. J Comput Chem, 2005, 26(16):1701-1718.

二级参考文献32

  • 1高洪涛,飞原英治.含有促进传热传质添加剂的溴化锂水溶液的表面张力[J].制冷学报,2004,25(3):5-8. 被引量:9
  • 2高洪涛,飞原英治.气相界面活性剂对溴化锂水溶液吸收水蒸气的影响[J].工程热物理学报,2005,26(3):391-393. 被引量:13
  • 3高洪涛,原英治.界面活性剂对溴化锂吸收水蒸气的影响[J].制冷学报,2005,26(2):29-33. 被引量:4
  • 4Daiguji H, Hihara E, Saito T. Mechanism of Absorption enhancement by Surfactant. Int. J. Heat Mass Transfer,1997, 40(8): 1743-1752.
  • 5Kulankara S, Verma S, Herold K E. Theory of Heat/Maaa Transfer Additives in Absorption Chillers. In: Proceedings of IMECE, 1999.
  • 6Yuan Z, Herold K E. Surface Tension of Pure Water and Aqueous Lithium Bromide with 2-Ethyl-Hexanol. Applied Thermal Engineering, 2001, 21:881-897.
  • 7Kulankara S, Herold K E. Surface Tension of Aqueous Lithium Bromide with Heat/Mass Transfer Enhancement Additives: the Effect of Additive Vapor Transport. Int.J. Refrig., 2002, 25:383--389.
  • 8Glebov D, Setterwall F. Experimental Study of Heat Transfer Additive Influence on the Absorption Chiller Performance. Int. J. Refrig., 2002, 25:538-554.
  • 9Ziegler F, Grossman G. Review Paper-Heat-Transfer Enhancement by Additives. Int. J. Refrig, 1996, 19: 301-309.
  • 10Kashiwagi T, Kurosaki Y, Shishido, H. Enhancement of Vapor Absorption Into a Solution Using the Marangoni Effect. JSME Trans., 1985, B51:1002-1009.

共引文献27

同被引文献32

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部