期刊文献+

一种基于局部信息的聚类密度度量 被引量:1

A metric for measuring density in clustering based on local information
原文传递
导出
摘要 为有效处理密度不均匀聚类问题,以数据集蕴涵的局部信息为出发点,提出一种数据点密度度量———松散度,用以揭示数据点与其相邻数据点的相对紧密程度及类属关系,从而解决密度不均匀聚类问题.依据松散度的性质实现了一种基于松散度的聚类方法,以验证松散度度量的有效性.实验结果表明,使用松散度来度量数据点的聚类密度信息可以有效处理密度不均匀聚类问题. The loose degree which measures density in cluster based on implicit local information was developed to solve the clustering problem for density inhomogeneity. The relation among data points in the same cluster can be revealed by the loose degree, and a clustering algorithm based on loose degree was implemented to verify the effectiveness of the loose degree. Experimental results indicate that the loose degree is a effective density metric for clustering various-density datasets.
出处 《大连海事大学学报》 CAS CSCD 北大核心 2008年第3期102-106,共5页 Journal of Dalian Maritime University
基金 国家自然科学基金资助项目(60673066)
关键词 聚类密度 不均匀聚类 局部信息 松散度 density clustering various-density clustering local information loose degree
  • 相关文献

参考文献10

  • 1ESTER M,KRIEGEL H P, SANDER J, et al. A density- based algorithm for discovering clusters in large spatial data-bases with noise[C]//Proceedings of the Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996.
  • 2ANKERST M,BREUNIG M, KRIEGEL H P,et al. OP- TICS: Ordering points to identify the clustering structure [C]//Proc of the ACM SIGMOD Int Conf on Management of Data. New York: ACM Press, 1999:49-60.
  • 3HINNERBURG A, KEIM D A. An efficient approach to clustering in large multimedia databases with noise[ C]//Proc of 4th Intl Conf on Knowledge Discovery and Data Mining.New York: AAAI Pros, 1998 : 58-65.
  • 4TRAN T N, WEHRENS R, BUYDENS L M C. KNN- kernel density-based clustering for high-dimensional [J ], Computational Statistics & Data Analysis, 2006(51 ):513- 525.
  • 5BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers [C]//Proc of 2000 ACM-SIGMOD Intl Conf on Management of Data. Dallas, Texas USA.ACM Press, 2000. 93-104.
  • 6ERTOZ L, STEINBACH M, KUMAR V. Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data[C]//Proc of the 2003 SIAM Intl Conf on Data Mining. San Francisco, USA: SIAM, 2003.
  • 7LOFTSGAARDEN D O, QUESENBERRY C P. A non-parametric estimation of a multivariate density function[J]. Ann Math Statist, 1965(36) : 1049-1051.
  • 8ZHANG Xian-chao,SHAN Shi-min, YU Zhi-hang, et al. A dispersive degree based clustering algorithm combined with classification[ C]//Proceedings of ISKE. Chengdu, China. Atlantis Press, 2007:1125-1131.
  • 9KARYPIS G, HAN E H S, KUMAR V. Chameleon: Hierarchical clustering using dynamic modeling [J ]. Computer, 1999, 32(8):68-75.
  • 10CRABTREE D, ANDREAE P, GAO X. QCA-A clustering evaluation method[C]//Proc of PAKDD. Berlin, Germany: Springer Press, 2007 : 59-70.

同被引文献8

  • 1Han Jiawei,Kamber M.DataMining:concepts and techniques[M]. [S.1.]: Morgan Kaufmann Publishers, 2001.
  • 2Kaufan L,Rpusseeuw P J.Finding groups in data:an introduction to cluster analysis[M].John Wiley & Sons, 1990.
  • 3Ester M, Kriegel H P,Xu X.Knowledge discovery in large SPA- TIAL database: focusing techniques for efficient class identifica- tion[C]//Proc Int Symp on Large Spatial Database(SSD' 95), 1995 : 67-82.
  • 4Ester M, Kriegel H P, Sander J, et al.A density-based algorithm for discovering clusters in large spatial database with noise[C]// Proceedings of 2nd International Conference on Knowledge Discovering and DataMining (KDD-96), Portland, Oregon, 1996: 226-231.
  • 5Xia Chenyi,Hsu W,Lee Mongli,et al.BORDER:efficient compu- tation of boundary points[J].IEEE Trans on Knowledge and Da- ta Engineering, 2006,18 (3) : 289-303.
  • 6邱保志,余田.基于网格梯度的边界点检测算法的研究[J].微电子学与计算机,2008,25(3):77-80. 被引量:9
  • 7薛丽香,邱保志.基于变异系数的边界点检测算法[J].模式识别与人工智能,2009,22(5):799-802. 被引量:20
  • 8邱保志,琚长涛.具有聚类功能的边界检测技术的研究[J].计算机工程与应用,2010,46(20):133-137. 被引量:3

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部