期刊文献+

基于两步策略的中文短文本分类研究 被引量:7

Chinese short-text classification in two-steps
原文传递
导出
摘要 为更好地挖掘文本信息,研究了将两步策略用于中文短文本分类的3个关键问题,提出了基于组合朴素贝叶斯(NB)和K近邻(KNN)分类器的两步中文短文本分类方法:(1)直接利用NB和KNN的输出构造其对应的二维空间,根据该空间内错误文本的分布将测试文本集分为3部分:能被KNN可靠分类的文本集A,不能被KNN可靠分类但能被NB可靠分类的文本集B,其他文本集C.(2)用KNN、NB分别对文本集A和B进行分类,根据训练语料的类别分布,直接给属于文本集C的文本分配标签.与NB、KNN和支持向量机(SVM)的对比实验表明,该方法可获得较高的分类性能. Three key issues of classifying Chinese short-text in two-steps were discussed to mine text information effectively, and a method of combining naive Bayesian (NB) with k-nearest neighbor (KNN) classifiers for this task was developed. Firstly, the test text collection was divided into three parts: part-A which could be classified reliably by KNN, part-B which could not be classified reliably by KNN but could be classified reliably by NB and the another part-C. All above was implemented by utilizing the outputs of NB or KNN classifier to construct the corresponding two-dimension space respectively, and thereby making the division according to the distribution of texts misclassified in the space. Then, part-A and part-B was classified respectively by using KNN and NB classifiers, and part-C was assigned directly the labels according to the distribution of categorization in the training data. The experimental results show that the proposed method achieves high performance comparing with KNN, NB and support vector machine (SVM).
作者 樊兴华 王鹏
出处 《大连海事大学学报》 EI CAS CSCD 北大核心 2008年第3期121-124,共4页 Journal of Dalian Maritime University
基金 国家自然科学基金资助项目(60703010) 重庆市自然科学基金资助项目(2006BB2374) 重庆市教委科学技术研究项目(KJ070519) 教育部回国留学人员启动基金资助项目(教外司留[2007]1109号)
关键词 中文短文本 文本分类 两步策略 朴素贝叶斯(NB) K近邻(KNN) Chinese short-text text classification two-steps strategy naive Bayesian (NB) k-nearest neighbor (KNN)
  • 相关文献

参考文献8

  • 1樊兴华,孙茂松.一种高性能的两类中文文本分类方法[J].计算机学报,2006,29(1):124-131. 被引量:70
  • 2樊兴华.因果推理和文本分类[D].北京:清华大学,2004.
  • 3FAN Xing-hua, SUN Mao-song, CHOI Key-sun, et al. Classifying chinese texts in two steps[C]// Proceedings of 2nd International Joint Conference on Natural Language. Berlin: Springer-Verlag, 2005 : 302-313.
  • 4FAN Xing-hua. A high performance prototype system for chinese text categorization[C]//Proceedings of 5th Mexican International Conference on Artificial Intelligence. Heidelberg, Berlin: Springer,2006:1017-1026.
  • 5LEWIS D. Naive baye.s at forty: The independence assumption in information retrieval[C]// Proceedings of the 10th European Conference on Machine Learning. Chemnitz, Germany: [s. n]. 1998:4-15.
  • 6MITCHELL T M. Machine Learning[M]. New York: McCraw Hill, 1996.
  • 7YANG Yi-ming, SLATTERY S, GHANI R. A study of approaches to hypertext categorization[J ]. Journal of Intelligent Information Systems, 2002, 18(2-3) :219-241.
  • 8孙丽华,张积东,李静梅.一种改进的kNN方法及其在文本分类中的应用[J].应用科技,2002,29(2):25-27. 被引量:36

二级参考文献17

  • 1Lewis D. D.. An evaluation of phrasal and clustered representalions on a text categorization task. In: Proceedings of SIGIR'92,the 15st ACM International Conference on Research and Development in Information Retrieval, Copenhagen, Denmark,1992, 37-50.
  • 2Sebastiani F,. Machine learning in automated text categorization. ACM Computing Surveys, 2002, 34(1): 1-47.
  • 3Lewis D.. Naive bayes at forty: The independence assumption in information retrieval. In: Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998,4-15.
  • 4Salton G.. Automatic Text Processing: The Transformation,Analysis, and Retrieval of Information by Computer. Reading,MA: Addison Wesley, 1989.
  • 5Mitchell T. M.. Machine Learning. New York: McCraw Hill,1996.
  • 6Joachims T.. Text categorization with support vector machines: Learning with many relevant features. In: Proceedings of the 10th European Conference on Machine Learning,Chemnitz, Germany, 1998, 137-142.
  • 7Yang Y. , Liu X.. A Re-examination of text categorization methods. In: Proceedings of SIGIR'99, the 22nd ACM International Conference on Research and Development in Information Retrieval, Berkeley, CA, 1999, 42-49.
  • 8樊兴华.因果推理和文本分类.清华大学博士后出站报告,2004.
  • 9Larkey L. S.. Automatic essay grading using text categorization techniques.. In: Proceedings of SIGIR'98, the 21st ACM International Conference on Research and Development in Information Retrieval, Melbourne, Australia, 1998, 90-95.
  • 10Dumais S. T. , Platt J. , Hecherman D. , Sahami M.. Inductive learning algorithms and representation for text categorization.In: Proceedings of CIKM'98, the 7th ACM International Conference on Information and Knowledge Management, Bethesda, MD, 1998, 148-155.

共引文献103

同被引文献68

引证文献7

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部