期刊文献+

一种基于ICA的特征Bagging支持向量机集成方法 被引量:2

ICA-based attribute Bagging support vector machine integration method
原文传递
导出
摘要 为提高支持向量机集成的泛化性能,提出一种基于独立成分分析法的特征Bagging支持向量机集成方法,删除了冗余特征.该方法从得到的独立成分特征空间中提取特征子空间,避免了直接从原特征空间中随机选择特征子空间而导致的对特征依赖或相关性的破坏,提高了个体支持向量机的性能,保证了个体支持向量机之间的差异度.在UCI和Stat-Log数据集合上的仿真实验表明,该方法具有更好的泛化性能. An attribute bagging support vector machine integration method based on independent component analysis (ICA) was developed to improve the generalization performance of support vector machine(SVM). The redundant feature was deleted, and feature subspace was extracted from feature space of independent element, which avoid the destruction of attribute dependence or attribute relativity caused by selecting sub-feature space from original feature space randomly. The performance of single SVM is improved and the diversity between each other is also ensured. Simulations on UCI and StatLog datasets show that the proposed method has better generalization performance.
出处 《大连海事大学学报》 EI CAS CSCD 北大核心 2008年第3期125-127,共3页 Journal of Dalian Maritime University
基金 国家自然科学基金资助项目(60673131) 黑龙江省自然科学基金资助项目(F2005-02)
关键词 支持向量机 集成 独立成分分析法 特征Bagging support vector machine integration independent component analysis (ICA) attribute Bagging
  • 相关文献

参考文献7

  • 1DONG Yan-shi, HAN Ke-song. A comparison of several ensemble methods for text categorization [C]//IEEE. International Conference on Services Computing. Shanghai:[s.n.], 2004:419-422.
  • 2DONG Yan-shi, HAN Ke-song. Boosting SVM classifiers by ensemble [ C]//14th International Conference on World Wide Web. New York, USA: [ s. n. ], 2005 : 1072-1073.
  • 3BRYLL R, GUTIERREZ-QSUNA R, QUEK F. Attribute Bagging: improving accuracy of classifier ensembles by using random feature subsets [ J ]. Pattern Recognition, 2003,36: 1291-1302.
  • 4MEI S Y, LIU Y, WU G F, et al. Rough reducts based SVM ensemble [ C]//Gordon Research Conference. New Hampshire:[s. n. ] ,2005 : 571-574.
  • 5KRYSZKIEWICZ M. Comparative study of alternative types of knowledge reduction in inconsistent systems[J ]. International Journal of Intelligent Systems, 2001,16( 1 ): 105-120.
  • 6ERIKSSONS J, KOIVUNEN V. Complex random vectors and ICA models:identifiability, uniqueness, and separability [J]. IEEE Trans on Information Theory, 2006, 52 (3): 1017-1029.
  • 7NEWMAN D J, HETTICH A, BLAKE C L, et al. UCI repository of machine learning databases[ EB/OL]. Irvine, CA: University of California, Department of Information and Computer Science. http://www, ics. uci. edu/- mlearn/ML- Repository. html, 1998.

同被引文献16

  • 1宋星光,夏利民.基于Bagging算法的水库水沙联合智能调度[J].计算机工程与应用,2004,40(25):218-219. 被引量:4
  • 2许耀华,胡艳军,张媛媛.基于离散粒子群算法的CDMA多用户检测方法[J].通信学报,2005,26(7):109-113. 被引量:11
  • 3Hansen LK, Salamon P. Neural network ensembles[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
  • 4Zhou Zhihua, Wu Jianxin, Tang Wei. Ensembling neural networks:many could be better than all[J]. Artificial In- telligence (S0738- 4602), 2002, 137(1) : 239 - 263.
  • 5Zhang XR, Wang S, Shah T, et al. Selective SVMs ensemble driven by immune clonal algorithm[J]. Appli- cations of Evolutionary Computing, 2005, 3449:325 - 333.
  • 6Hansen LK, Salamon P. Neural network ensembles[J]. IEEE Trans. on Pattern Analysis and Machine Intelli- gence, 1990, 12(10) :993 - 1001.
  • 7Lei Xu, A Krzyzak, C Y Suen. Methods of Combining Multiple Classifiers and Their Applications to Handwritten Recognition [ J 1. IEEE Trans. System, Man and Cybernetics, 1992,22 ( 3 ) :418- 435.
  • 8C Y Suen, et al. Computer Recognition of Unconstrained Hand- written Numerals [ J ]. Proceedings of the IEEE, 1992,80 ( 7 ) : 1162-1180.
  • 9L K Hansen, P Salamon. Neural network ensembles [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10) :993-1001.
  • 10Zhou Zhihua, Wu Jianxin, Tang Wei. Ensembling neural net- works:many could be better than all [ J ]. Artificial Intelligence ( S0738-4602), 2002,137( 1 ) :239-263.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部