摘要
首先通过选取适当的等温参数将三维Minkowski空间R2.1中的全脐点类时曲面与Liouvile方程相联系.其次,通过类时曲面上的类光曲线坐标将R2.1中的类时极值曲面与齐次波动方程相联系.进一步,利用Liouvile方程与齐次波动方程之间的Backlund变换,我们可以从三维Minkowski空间中一个全脐点的类时曲面得到该空间中一个类时极值平移曲面.
In this paper, we first set up the intimate relation between the timelike umbilical surface in Minkowski 3 space and Liouville equation by choosing properly isothermal parameter. Next, we make contact the timelike extremal surface in Minkowski 3 space with homogeneous wave equation of the second order by the lightlike coordinate of curve on the timelike surface. Moreover, by using the Bcklund transformation between Liouville equation and homogeneous wave equation of the second order, we obtain a timelike extremal surface of translation from a timelike umbilical surface in Minkowski 3 space.
出处
《纯粹数学与应用数学》
CSCD
1997年第2期83-87,共5页
Pure and Applied Mathematics
基金
国家自然科学基金
关键词
类时极值曲面
BAECKLUND变换
微分几何
timelike umbilical surface
timelike extremal surface
Liouville equation
Bcklund transformation