摘要
结合环中的环的幂零性不是根性质.为此,本文将结合环中的幂零理想概念扩展为次拟幂零理想和拟幂零理想,定义次拟幂零根SN和拟幂零根QN,证明它们均为Amitsur-Kurosh根,且二者相等.进一步,我们给出了QN-半单环的构造命题和QN-根的模刻划.
In this paper, the concepts of subquasi nilpotent ideal and Quasi nilpotent ideal as extention of the notion of nilpotent ideal are introduced in the class of associative rings, the definitions of subquasi nilpotent radical and Quasi nilpotent radical are given and they are proved being Amitsur Kurosh radical and being equal. Moreover, the structure theorem of semisimple ring and module characterization for Quqsi nilpotent radical are represented respectively.
出处
《纯粹数学与应用数学》
CSCD
1997年第2期88-93,共6页
Pure and Applied Mathematics
基金
黑龙江省教委科研基金
鞍山师院科研基金
关键词
根
模
环
幂零性
N根
SN根
nilpotent
Quasi nilpotent
radical
module