摘要
在正交增量鞅的随机积分基础上,利用Lipschitz条件,讨论了下面一类两参数随机积分方程解的唯一性.X(s,t)=Z(s,0)+Z(0,t)-Z(0,0)+∫Rstα(u,v,X)dMuv+∫Rstβ(u,v,X)dmuv+∫R2stγ1(u,v,u′,v′,X)dMuvdMu′v′+∫R2stγ2(u,v,u′,v′,X)dMuvdmu′v′+∫R2stγ3(u,v,u′,v′,X)dmuvdMu′v′.其中α、β、γi,i=1,2,3均属于相应的泛函空间,{MZ}是满足[M]Z=CZ的R2+上正交增量鞅,m是R2+上的Lebesque测度.
The unique of following two——parameter stochastic integral equations is proved with the lipschitz conditions X(s,t)=Z(s,0)+Z(0,t)-Z(0,0)+∫ R st α(u,v,X)dM uv +∫ R st β(u,v,X)dM uv +∫ R 2 st r 1(u,v,u′,v′,X)dM uv dM u′v′ +∫ R 2 st r 2(u,v,u′,v′,X)dM uv dm u′v′ +∫ R 2 st r 3(u,v,u′,v′,X)dm uv dM u′v′ . here α、β、r i,i=1,2,3 belong to individual functional spaces, {M Z} is a martingale with orthogonal increments on R 2 +. m is the measure with Lebesque on R 2 +.
出处
《纯粹数学与应用数学》
CSCD
1997年第2期99-103,共5页
Pure and Applied Mathematics
关键词
随机积分方程
解
唯一性
随机过程
鞅
martingales with orthogonal increments
lipschitz condition
the solution of stochastic integral equations
solution pathwise uniqueness