摘要
用初等方法证明了:当n,r为正整数且r>1,s≥0整数,δ=10s+1,丢番图方程∑n-1k=0(1+δk)r=(1+δn)r无整数解.
By means of an elementary method this paper proves that when n,r and δ are positive integer with r>1,δ≥0, δ=10s+1, the equation ∑n-1k=0(1+δk) r=(1+δn) r has no integer solution.
出处
《纯粹数学与应用数学》
CSCD
1997年第2期118-123,共6页
Pure and Applied Mathematics