期刊文献+

基于拥挤距离排序的多目标粒子群优化算法及其应用 被引量:40

Multi-objective particle swarm optimization algorithm based on crowding distance sorting and its application
下载PDF
导出
摘要 针对多目标粒子群算法在全局寻优能力和Pareto集多样性上的不足,提出基于拥挤距离排序的多目标粒子群算法。该算法采用精英策略,基于个体拥挤距离降序排列,进行外部种群的缩减和全局最优值的更新,并在内部粒子群中引入小概率变异机制,增强算法的全局寻优能力,控制Pareto最优解的数目,同时保证其收敛性和多样性特征。在电梯曳引性能的多目标优化应用中,证明了该算法对于两目标和三目标优化问题求解的有效性。不同规模实例的运算对比表明,该算法在Pareto前沿的收敛性和多样性方面均优于改进强度Pareto进化算法,且缩短了运算时间,具有较高的效率与鲁棒性。 Aiming at shortcomings in global searching capacity and diversified Pareto set existing in the traditional multi-objective particle swarm optimization algorithms, a multi-objective particle swarm optimization algorithm based on crowding distance sorting was proposed. With the elitism strategy, the shrink of the external population and update of the global optimum were achieved based on individuals' crowding distance sorting in descending order. A small ratio mutation was introduced to the inner swarm to enhance the global searching capacity of the algorithm. And the number of Pareto optimal solutions could be controlled, the convergence and diversity of Pareto optimal set could be guaranteed as well. Effectiveness of the algorithm with two or three objectives was proved by the optimiza- tion of elevator traction performances. Comparison results among cases with different scales illustrated that this al- gorithm outperformed Strength Pareto Evolutionary Algorithm 2 (SPEA2) in the convergence and diversity characteristics of Pareto optimal front with shorter computation time, higher efficiency and robustness.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2008年第7期1329-1336,共8页 Computer Integrated Manufacturing Systems
基金 国家863计划资助项目(2008AA042301) 国家自然科学基金资助项目(60573175) 国家科技支撑计划资助项目(2006BAF01A37)~~
关键词 多目标优化 粒子群优化算法 Pareto集 个体拥挤距离 电梯曳引 multi-objective optimization particle swarm optimization algorithm Pareto set individual crowding distance elevator traction
  • 相关文献

参考文献16

  • 1KENNEDY J, EBERHART R. Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neutral Networks. Piscataway, N.J. , USA: IEEE Service Center, 1995:1942-1948.
  • 2COELLO C, PULIDO G, LECHUGA M. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
  • 3王丽,刘玉树,徐远清.基于在线归档技术的多目标粒子群算法[J].北京理工大学学报,2006,26(10):883-887. 被引量:10
  • 4LI Xiaodong. A nondominated sorting particle swarm optimizer for multiobjective optimization[J]. Lecture Notes in Computer Science, 2003,272:37-48.
  • 5熊盛武,刘麟,王琼,史旻.改进的多目标粒子群算法[J].武汉大学学报(理学版),2005,51(3):308-312. 被引量:21
  • 6ALVAREZ-BENITEZ J, EVERSON R, FTELDSEND J. A MOPSO algorithm based exclusively on Pareto dominance concepts[J]. Lecture Notes in Computer Science, 2005,3410:459-473.
  • 7肖人彬,邹洪富,陶振武.公差设计多目标模型及其粒子群优化算法研究[J].计算机集成制造系统,2006,12(7):976-980. 被引量:17
  • 8贺益君,俞欢军,成飙,陈德钊.多目标粒子群算法用于补料分批生化反应器动态多目标优化[J].化工学报,2007,58(5):1262-1270. 被引量:17
  • 9VELDHUIZEN D, LAMONT G. Multi-objective evolutionary algorithms: analyzing the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2000, 18(2): 125-147.
  • 10DEB K, PRATAP A, AGARWAL S. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.

二级参考文献55

  • 1玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 2Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory[A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science[C]. Piscataway, NJ: IEEE Service Center,1995. 39-43.
  • 3Deb K. Multi-Objective Optimization Using Evolutionary Algorithms[M]. England:John Wiley & Sons Ltd ,2001.
  • 4Kennedy J, Eberhart R C. Swarm Intelligence [M].San Francisco:Morgan Kaufmann Publishers, 2001.
  • 5Purshouse R C, Fleming P J. Elitism, Sharing and Ranking Choices in Evolutionary Multi-Criterion Optimisation[R]. Sheffield, UK: Departament of Automatic Control and Systems Engineering, University of Sheffield, 2002.
  • 6Coello C A, Lechuga M S. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization [A].Proceedings of the 2002 Congress on Evolutionary Computation (CEC' 2002) [C]. Piscataway, New Jersey: IEEE Service Center, 2002.
  • 7Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm [R]. Zurich: Swiss Federal Institute of Technology Zurich (ETH) ,2001.
  • 8Knowles L. Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization [D]. UK: Department of Computer Science, University of Reading,2002.
  • 9Zitzler E. Evolutionary Algorithms for Multiobjecitve Optimization: Methods and Applications [D]. Zurich,Switzerland: Swiss Federal Institute of Technology (ETH) ,1999.
  • 10ROY U,LIU C R,WOO T C.Review of dimensioning and tolerancing:representation and processing[J].Computer-Aided Design,1991,23(7):466-483.

共引文献65

同被引文献502

引证文献40

二级引证文献369

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部