摘要
本文证明了两个结论:(a)设D是有界圆型域,O∈D,对于其任意不变度量的核函数K,如果f∈Aut(D),f(t)=0那么f有(1')的表示形成。(b)设Ω是关于坐标分量对称的有界Rrinhardt域,O∈Ω,如果f∈Aut(Ω)且f(o)=0,那么f必为酉变换。此外还给了Chrtan引理另外一个证明。
In this article we prove the following two theoreies (a) let D be a bounded circular domain,0∈D. If K is an arbitrary kernel of the invariant metric. and f∈ Aut (D), f(t) = 0. then f can bewhiten with formula (1' )(b) Let Ω be a bounded Reinhardt domain whose coordinates are symmetric, 0∈ Ω. If fΩ Aut(Ω), f(0) = 0, then f must be a unitary transformation.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1997年第3期23-28,共6页
Journal of East China Normal University(Natural Science)