摘要
研究如下奇异非稳态问题ut(x,t)-p-1(x)(p(x)u′(x,t))′+q(x)u(x,t)=H(x,t)t>0x∈I≡(0,1)u′(0,t)=u(1,t)=0t>0u(x,0)=φ(x){的有限元方法.分别使用Euler-Galerkin方法和Crank-Nicolson-Galerkin方法。
Finite element method is applied to singular time dependent problem in one dimension spaceu t(x,t)-p -1 (x)(p(x)u′(x,t))′+q(x)u(x,t)=H(x,t) t>0 x∈I≡(0,1) u′(0,t)=u(1,t)=0 t>0 u(x,0)=φ(x) Error estimates of a complete descretization solution in weighted L 2 norm are given by Euler Galerkin methods and Crank Nicolson Galerkin methods.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
1997年第6期744-752,共9页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金
关键词
奇异非稳态问题
全离散解
误差估计
singular time dependent problem weighted sobolev space complete descretization solution error estimatein weighted L 2 norm