摘要
考虑一类含参数对数平均值的极小积问题.利用对数平均值不等式,问题转述为不含对数的参数规划问题.作为它们的应用,如果涉及的函数均为线性齐次、约束集为凸多面体(无论有界或无界),则必存在最优解并且可以在其极点处实现.
The minimization of products of logarithmic means containning parameters is considered.By means of logarithmic mean inequality,the problem is transformed into a minimization problem of parametric programmings.As an application,a vertex optimal solution is obtained,if the functions are linear homogeneous and with a polytope constraint set (bounded or unbounded).
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
1997年第6期764-767,共4页
Journal of Inner Mongolia University:Natural Science Edition
基金
内蒙古自然科学基金
关键词
对数平均值
不等式
参数规划
极小积问题
logarithmic mean inequality parametric programming polytope vertex minimizing products