摘要
提出了Rn上的γ-次微分与γ-凸性的概念.利用γ-次微分给出了许多局部极小(极大)不能满足的全局极小(极大)的一个新的必要条件.利用γ-凸性给出了全局极小的充分条件,且γ-凸函数的局部极小总是全局极小.
In this paper the γ subdifferential and γ convexity of realvalued functions on the R n were introduced. By means of the γ subdifferential a new necessary condition for global minima is formulated which many local minima cannot satisfy.The γ convexity is used to state sufficient conditions for global minima. The γ convex function is relatively large.For example,there are γ convex functions which are not continuous anywhere. Nevertheless,a local minimum of a γ convex function is always a global minimum.
出处
《科技通报》
1997年第6期358-363,共6页
Bulletin of Science and Technology
基金
国家自然科学基金
关键词
γ-次微分
γ-凸性
最优化
极小
极大
subdifferential, convex, optimization, minimum, maximum, necessary condition, sufficient condition