期刊文献+

Internet网络访问直径的短期及长期预测

Short-term and Long-term Forecast of Internet Traveling Diameter
下载PDF
导出
摘要 本文首先形式化定义表征Internet的参量—访问直径,然后根据海量数据变化特点,提出了基于Logistic模型的、以正余弦函数模拟振荡变化的数学模型,使用浮点型遗传算法确定模型形式。由于Internet访问直径演化复杂,传统一维模型在长期预测中已不适用。因此在长期预测方面,首先计算得到Internet访问直径的关联维数,然后根据关联维数及奇异吸引子相近空间混沌轨道运动特性,提出了基于三维常微分方程组数学模型形式。 Based on giant samples, a property of Internet-traveling diameter-was firstly defined, and its mathematical model which was composed by a Logistic Model and sine and cosine function groups simulating oscillations during the growth of traveling diameter was then determined by a Float-point GA. Since growth of traveling diameter is complex, the model mentioned above is not suitable while being used for a long-term forecast. To solve this problem,Correlation Dimension of traveling diameter was calculated, and a model comprising three-dimension function groups was put foreward based on the value of Correlation Dimension and properties of track near the strange attractor in Chaos system. This model was proved to be comparatively suitable for long-term forecast.
出处 《计算机科学》 CSCD 北大核心 2008年第7期61-64,共4页 Computer Science
关键词 复杂网络 访问直径 LOGISTIC模型 浮点遗传算法 关联维数 奇异吸引子 Complex networks, Traveling diameter, Logistic model, Float-point GA, Correlation dimension, Strange attractor
  • 相关文献

参考文献14

二级参考文献81

  • 1潘介正.逻辑斯谛模型的递归分析与拟合[J].东北农业大学学报,1994,25(4):385-388. 被引量:6
  • 2李俊喜.人口剧增——生产力发展的掣肘因素——关于人口与生产力发展关系的思考[J].中国人口·资源与环境,1994,4(A00):22-25. 被引量:2
  • 3Iba H, Sasaki T. Using genetic programming to predict financial data. In: Angeline PJ, ed. Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999. 244~251.
  • 4Harrier C, Frohlich J. Generalized function analysis using hybrid evolutionary algorithms. In: Angeline PJ, ed. Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999. 287~294.
  • 5Yoshihara I, Numata M, Sugawara K, Yamada S, Abe K. Time series prediction model building with BP-like parameter optimization. In: Angeline PJ, ed. Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999.295~301.
  • 6Ferreira AR, da Sih, s. Evolving best-basis representations. In: Angeline PJ, ed. Proceedings of the Congress on Evolutionary Computation, Vol 1. Piscataway: IEEE Press, 1999. 302~309.
  • 7Kang LS, Li Y, Chert YP. A tentative research on complexity of automatic programming. Wuhan University Journal of Natural Sciences, 2001,6(1-2):59~62.
  • 8Cao HQ, Keng LS, Chert YP. Evolutionary modeling of systems of ordinary differential equations with genetic programming.Genetic Programming and Evolvable Machines, 2000,1(4).309--337.
  • 9http://www.tydata.com
  • 10Eiben A E, Rudolph G. Theory of evolutionary algorithms: a bird' s eye view[J]. Theoretical Computer Science 1999,229(1 ): 3 - 9

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部