期刊文献+

基于推理信息的本体模块化方法 被引量:3

Reasoning Information Based Ontology Modularization
下载PDF
导出
摘要 本体模块化在本体推理和复用等应用中有着极为重要的作用。怎么样将本体划分成小的模块是最基本的问题,目前本体模块化的工作主要集中在本体复用的目的上。在这篇文章中,我们提出了一种基于推理信息的本体模块化方法,该方法以提高推理的性能为目的。在基于同一最小推理集合内的公理之间内聚性将会增强的合理假设下,我们的模块化方法通过分析每次推理的过程,得到推理的最小推理集合,然后增强最小推理集合内公理1之间的内聚度,最后根据内聚度将本体划分成模块。在评估阶段,我们首先使用训练公理划分本体,然后通过测试公理来调查本体推理性能提高的程度。根据训练公理和测试公理所属范围的不同,我们使用了三组实验:训练公理和测试公理限定在同一较小范围,训练公理和测试公理不限定范围,训练公理和测试公理的范围实现三次不同的改变。实验的结果尤其是符合实际应用情况的实验三的结果证明了基于推理信息的本体模块化方法的有效性。 There is a growing need for applying the principle of modularity to representations of ontological knowledge in order to facilitate the scalability and reuse of ontology. How to partition ontology automatically is the primary issue, current research work has focused on re-use of ontology. In the paper, a reasoning information based ontology modularization method is presented for the purpose of enhancing the reasoning performance in ontology. According to the as- sumption that axioms which are in the same Minimal Reasoning Set have high cohesion,our method firstly calculates Minimal Reasoning Set of every reasoning task by analyzing the process of reasoning, then cohesion between axioms in the same Minimal Reasoning Set is increased; finally ontology is partitioned into modules according to cohesion. In the evaluation stage, training axioms are used to modularize ontology firstly, then some test axioms are carried to investigate the enhancement of reasoning performance. Three experiments are used to evaluate our ontology modularization approach, the results, especially the result of experiment three which is similar to practical situation prove the effectiveness of the reasoning information based ontology modularization method.
出处 《计算机科学》 CSCD 北大核心 2008年第7期177-180,共4页 Computer Science
基金 国家自然科学基金资助项目(60675015)资助
关键词 本体 模块化 推理 公理 Ontology,Modularization, Reasoning, Axioms
  • 相关文献

参考文献9

  • 1Berners-Lee T, Hendler J, Lassila O, The semantic Web, Scientitle American, May 2001 : 28-37.
  • 2Spaccapietra S, Report on Modularizatlon ot Ontologles, I echnical report. The Knowledge Web project,June 2004.
  • 3Stuckenschmidt H, Klein M, Structure-based partitioning of large class hierarchies//Proc. ISWC-2004. 2004:289 -303.
  • 4Seidenberg J, Rector A. Web ontology segmentation:Analysis, classification and use//Proc. WWW-2006, 2006.
  • 5Noy N, Musen M, The PROMPT state: Interactive tools for ontology mapping and merging. Int. Journal of Human-Computer Studies,2003,6(S9).
  • 6Grau B C, Horrocks I, Nazakov Y, et al. Just the Night Amount Extracting Modules from Ontologies//Proc.www.2007. 2007.
  • 7Baader F, Calvanese D, McGuinness D L, et al. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2003.
  • 8Batagelj V. Analysis of large networks - islands. Presented at Dagstuhl seminar 03361: Algorithmic Aspects of Large and Complex Networks, August/September 2003.
  • 9Horrocks I , Sattler U . A tableaux decision procedure ior SHOIQ//Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). 2005 : 448-453.

同被引文献35

  • 1罗景,赵伟,秦涛,姜人宽,张路,孙家骕.基于有向带权图迭代的面向对象系统分解方法[J].软件学报,2004,15(9):1292-1300. 被引量:13
  • 2宋荣,余忠华.轴承锈蚀领域知识的本体描述[J].制造业自动化,2005,27(8):6-8. 被引量:2
  • 3林海文.利用上下文语境消除歧义[J].计算机工程与设计,2006,27(16):3028-3031. 被引量:2
  • 4Doran P.Ontology Reuse via Ontology Modularisation[A].In Proceedings of KnowledgeWeb PhD Symposium 2006(KWEPSY2006)[C/OL].Budva,Montenegro.17th June 2006.[2010-08-06].http://www.13s.de/kweb/kwepsy2006/FinalSubmissions/kwopsy2006_doran.pdf.
  • 5Ranganathan S R.Classification and Communication[M].University of Delhi,Delhi,India,1951:215-287.
  • 6Suggested Upper Merged Ontology(SUMO)[EB/OL].[2010-08-06] http://www.ontologyportal.org/.
  • 7WordNet,a lexical Database for the English Language[EB/OL].[2010-08-06].http://wordnet.princeton.edu/.
  • 8Wine.OWL[EB/OL].[2010-08-06].http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.
  • 9Rector A L.Modularisation of Domain Ontologies Implemented in Description Logics and Related Formalisms Including OWL[A].In Proceedings of 2nd Int.Conf.Knowledge Capture(K-CAP)[C].ACM Press,2003:121-128.
  • 10Seidenberg J,Rector A.Techniques for Segmenting Large Description Logic Ontologies[A].In Wonkshop on Ontology Management:Searching,Selection,Ranking,and Segmentation,3rd Int.Conf.on Knowledge Capture(K-Cap)[C].Banff,Canada,2005:49-56.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部