期刊文献+

一种基于光流和能量的图像匹配算法 被引量:1

Images Matching Approach Based on the Optical Flow and Energy
下载PDF
导出
摘要 结合光流与图像信息,提出一种获取稠密视差的图像匹配算法。首先对于基线较大的左右图像,在多分辨率框架下采用由粗到精的策略计算光流,从而实现大偏移量时的光流获取。其次为了避免光流在图像边界上的不可靠性,通过光流计算所得的光流场作为初始视差图,采用基于能量的方法依据对应的图像梯度场对光流场内部进行平滑并保持边缘的不连续性,最终得到精准稠密的视差图。实验验证,该方法是一种行之有效的图像匹配算法。 An image matching algorithm combining optical flow with image information is proposed in this paper to acquire dense disparity map. Firstly, in the multi resolution frame the coarse-to-fine strategy is applied to calculate the optical flow for wide baseline stereo pairs, so the large displacements optical flow estimation is realized. Secondly, in order to solve the unreliability of the optical flow at the image edge, taking the optical flow field as the initial disparity map,energy based approach is adopted that smoothes disparity inside the boundaries and remains the discontinuity across the boundaries according to the gradient field of image, then dense and precise disparity map is acquired. Finally, the pro- posed image matching algorithm is illustrated with three stereo image pairs, the validity and feasibility of our approach is experimentally verified.
出处 《计算机科学》 CSCD 北大核心 2008年第7期227-230,共4页 Computer Science
基金 国家自然科学基金(60672074) 江苏省自然科学基金(BK2006569) 南京理工大学青年学者基金(Njust200401)资助
关键词 图像匹配 视差图 光流 Image matching, Disparity map, Optical flow
  • 相关文献

参考文献2

二级参考文献7

  • 1[1]Dhond U R, Aggarwal J K. Structure from stereo:a review. IEEE Trans Sys Man &Cyber, SMC. 1989;19(6):1489 - 1510
  • 2[2]Oppenheim A V,Lim J S. The importance of phase in signals. Proc of the IEEE, 1981;69(5):529 - 541
  • 3[3]Fleet D J, Jepson A D, Jenkin M R M. Phas ebased disparity measurement. CVGIP:Image Understanding, 1991 ;53(2): 198 - 2 10
  • 4[4]Sanger T D. Stereo disparity computation using Gabor filters. Bio Cyber, 1988;59:405 - 418
  • 5[5]Daubechies I. Orthonormal bases of compactly supported wavelets.Comm Pure and Appl Math,1988;41:909 - 996
  • 6[6]Mallat S G. Multiresolution signal decomposition: the wavelet representation. IEEE Trans on PAMI, 1989; 11:674 - 693
  • 7You Yuli,IEEE Trans Image Processing,1996年,5卷,11期,1539页

共引文献13

同被引文献25

  • 1孙君顶,丁振国,周利华.基于图像信息熵与空间分布熵的彩色图像检索方法[J].红外与毫米波学报,2005,24(2):135-139. 被引量:21
  • 2段先华,王平安,夏德深.基于相位微分技术的光流估计[J].数据采集与处理,2005,20(3):249-253. 被引量:3
  • 3万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 4季春.基于内容的视频检索中的关键帧提取技术[J].情报杂志,2006,25(11):116-119. 被引量:18
  • 5胡以静,李政访,胡跃明.基于光流的运动分析理论及应用[J].计算机测量与控制,2007,15(2):219-221. 被引量:29
  • 6Costa C, Antonucci F, Pallottino F, et al. Shape analysis of agricultural products: a review of recent research advances and potential application to computer vision[J]. Food and Bioprocess Technology, 2011, 4(5): 673-692.
  • 7Ticay-Rivas J R, Del Pozo-Banos M, Travieso C M, et al. Pollen classification based on geometrical, descriptors and colour features using decorrelation stretching method[C]//7th IFIP WG 125 International Conference on Artificial Intelligence Applications and Innovations, Corfu, Greece: Springer New York; 2011 : 342-349.
  • 8Sakamoto T, Shibayama M, Takada E, et al. Detecting seasonal changes in crop community structure using day and night digital images[J].Photogrammetric Engineering and Remote Sensing, 2010; 76(6): 713-726.
  • 9Liang H, Mahadevan L. Growth, geometry, and mechanics of a blooming lily[J]. Proceedings of the National Academy of Sciences, 2011, 108(14): 5516- 5521.
  • 10Cuntoor N P, CheUappa R. Key frame-based activity representation using antieigenvalues[C]//7th Asian Conference on Computer Vision, ACCV 2006, January 13, 2006 - January 16, 2006; Hyderabad, India: Springer Verlag; 2006, 499-508.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部