期刊文献+

用分子对接方法研究HIV-1整合酶与病毒DNA的结合模式 被引量:8

Studies on the Binding Modes of HIV-1 Integrase with Viral DNA via Molecular Docking Method
下载PDF
导出
摘要 用分子对接方法研究了HIV-1整合酶(Integrase,IN)二聚体与3′端加工(3′Processing,3′-P)前的8bp及27bp病毒DNA的相互作用,并获得IN与27bp病毒DNA的特异性结合模式.模拟结果表明,IN有特异性DNA结合区和非特异性DNA结合区;IN二聚体B链的K14,R20,K156,K159,K160,K186,K188,R199和A链的K219,W243,K244,R262,R263是IN结合病毒DNA的关键残基;并从结构上解释了能使IN发挥活性的病毒DNA的最小长度是15bp.通过分析结合能发现,IN与DNA稳定结合的主要因素是非极性相互作用,而关键残基与病毒DNA相互识别主要依赖于极性相互作用.模拟结果与实验数据较吻合. HIV-1 integrase(IN) integrates the viral DNA into the host cell chromosome, however, the bind- ing mode of IN with the viral DNA and the integration mechanism remain unclear. In this paper, molecular docking method was used to investigate the interactions of HIV-1 IN dimer with the 8 bp and 27 bp segments of viral DNA before the 3' processing(3'-P) reaction, and the specific binding mode between IN and its substrate 27 bp segments of viral DNA was obtained. The results show that IN has one specific DNA-binding region and another non-specific DNA-binding region. The key residues for IN dimer binding with viral DNA are K14, R20, K156, K159, K160, K186, K188, R199 residues in chain B and K219, W243, K244, R262, R263 residues in chain A. The explanation for the minimum length of 15 bp viral DNA to activate IN was given on the basis of the docked complex structure. Through the analysis of the binding energy, it was found that non-polar interactions are the principal factor favoring the binding between IN and DNA; whereas, the stable association of viral DNA with the key residues are mainly driven by polar interactions. The simulation results basically agree with the experimental data, which provide us with some structural information for the drug design on the basis of the structure of HIV-1 IN.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2008年第7期1432-1437,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:30670497,30500429) 北京市自然科学基金(批准号:5072002)资助
关键词 HIV-1整合酶 病毒DNA 分子对接 结合模式 药物分子设计 HIV-1 integrase Viral DNA Molecular docking Binding mode Drug molecule design
  • 相关文献

参考文献31

  • 1Engelman A. , Mizuuchi K. , Craigie R.. Cell[J], 1991,67:1211--1221
  • 2ChowS. A.. Methods[J], 1997, 12:306--317
  • 3Gallay P. , Swingler S. , Song J. , et al.. Cell[J] , 1995, 83:569--576
  • 4Chen J. C., Krucinski J., Miercke L. J., etal.. Proc. Nat.l Acad. Sci. [J], 2000, 97:8233--8238
  • 5Luca L. D. , Pedretti A. , Vistoli G. , et al.. Biochem. Biophys. Res. Commun. [J], 2003, 310:1083--1088
  • 6Esposito D. , Craigie R.. EMBO J. [J] , 1998, 17:5832--5843
  • 7Espeseth A. S. , Felock P. , Wolfe A.. Proc. Natl. Acad. Sci. [J], 2000, 97:11244--11249
  • 8Lee S. P. , Kim H. G. , Censullo M. L. , et al.. Biochemistry[J], 1995,34:10205--10214
  • 9Vink C. , van Gent D. C. , Elgersma Y. , et al.. J. Virol. [J] , 1991,65:4636-4644
  • 10Petrey D., Xiang Z. X., Tang C. L., etal.. Protein-Struct. Funct. Genet. [J], 2003, 53:430-435

同被引文献100

  • 1HU JianPing1,2, CHANG Shan1, CHEN WeiZu1 & WANG CunXin1 1 College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100022, China,2 Department of Chemistry & Life Sciences, Leshan Normal University, Leshan 614004, China.Study on the drug resistance and the binding mode of HIV-1 integrase with LCA inhibitor[J].Science China Chemistry,2007,50(5):665-674. 被引量:7
  • 2Xiao-huiMA Xiao-yiZHANG Jian-junTAN Wei-zuCHEN Cun-xinWANG.Exploring binding mode for styrylquinoline HIV-1 integrase inhibitors using comparative molecular field analysis and docking studies[J].Acta Pharmacologica Sinica,2004,25(7):950-958. 被引量:3
  • 3傅婷婷,倪孟祥.核苷类抗艾滋病药物研发近况[J].药学进展,2007,31(5):211-216. 被引量:11
  • 4Wang J Y, Ling H, Yang W, et al. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein[J]. EMBO J, 2001, 20(24) : 7333-7343.
  • 5Goldgur Y, Graigie R, Cohen G H, et al. Structure of the HIV-I integrase catalytic domain complexed with an inhibitor: A platform for antiviral drug design[J]. Proc Natl Acad Sci U S A, 1999, 96(23) : 13040-13043.
  • 6Chen J C, Krucinski J, Miercke L J, et al. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for viral DNA binding[J]. Proc Natl Acad Sci U S A, 2000, 97(15): 8233-8238.
  • 7Maignan S, Guilloteau J P, Zhou L Q, et al. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases[J] .J Mol Biol, 1998, 252(2): 359-368.
  • 8Cai M, Zheng R, Caffrey M, et al. Solution structure of the N- terminal zinc binding domain of HIV-1 integrase[J]. Nat Struct Biol, 1997, 4(7): 567-577.
  • 9Bujacz G, Alexandratos J, Wlodawer A, et al. Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity[J]. J Biol Chem, 1997, 272(29) : 18161-18168.
  • 10Steriniger M, Adams C D, Marko J F, et al. Defining characteristics of Tn5 transposase non-specific DNA binding [ J]. Nucleic Acids Res, 2006, 34(9): 2820-2832.

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部