期刊文献+

基于NIR和化学指标的国产烤烟烟叶产地、部位模式识别 被引量:11

Pattern Recognition of Growing Area and Stalk Position of Domestic Flue-cured Tobacco Based on NIR and Chemical Components
下载PDF
导出
摘要 分别以NIR光谱和总糖、还原糖、烟碱、总氮、钾、氯检测数据为基础,采用基于马氏距离的判别法对2003、2004年1129个国产烤烟烟叶样品的产地和部位进行了模式识别。结果表明:采用NIR光谱与这6个主要化学成分指标对烟叶产地的识别准确率分别为88%~94.5%和62%~78%,对不同产地烟叶部位的识别准确率分别为71%~75%与63%~67%,对同一产地烟叶部位的识别准确率分别为82%~87%与80%~93%,对上、下部烟叶模式识别的识别准确率分别为92%~98%与89%~98%。NIR光谱可用于烟叶产地、部位的识别,这6个主要化学成分指标仅适合于烟叶部位的识别。 The pattern recognition of growing area and stalk position of 1129 domestic flue-cured tobacco samples in 2003 and 2004 were carried out by Mahalanobis distance-based discrimination dependent on their near infrared spectra (NIRs) and main chemical components, including total sugar, reducing sugar, nicotine, total nitrogen, potassium and chlorine. The results indicated that the accuracies of growing area recognition by NIRs and chemical components were 88% to 94.5% and 62% to 78% , respectively; and the accuracies of stalk position recognition for tobacco from different areas were 71% to^75% and 63% to 67% , respectively, and for tobacco from the same area were 82% to 87% and 80% to 93% , respectively; the accuracies of upper and lower leaves recognition were 92% to 98% and 89% to 98% , respectively. It was concluded that NIR was suitable to the recognition of growing area and stalk position, while the six main chemical components were only fit for the recognition of stalk position.
出处 《烟草科技》 EI CAS 北大核心 2008年第7期42-44,47,共4页 Tobacco Science & Technology
关键词 近红外光谱 产地 部位 烤烟 烟叶 Near infrared spectrum Growing area Stalk position Flue-cured tobacco Tobacco leaf
  • 相关文献

参考文献5

  • 1束茹欣,王国东,张建平,倪力军.国产烤烟烟叶的NIRS模式识别[J].烟草科技,2006,39(8):12-15. 被引量:43
  • 2王国东,束茹欣,张建平,倪力军.不同产地国产烤烟近红外光谱的特征分析及其模式识别[J].烟草科技,2006,39(5):36-40. 被引量:42
  • 3MAHA HANA, MCCLURE W F. Applying artificial neuralnetworks. II. Using near infrared data to classify tobacco types and identify native grown tobacco[ J]. J Near Infrared Spectra, 199 7 (5) : 19-25.
  • 4Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[ J]. Anal Chem, 1994, 36 : 1627-1639.
  • 5梁逸曾,俞汝勤.分析化学手册(第二版)第十分册[M].北京:化学工业出版社,2000:260-267.

二级参考文献17

  • 1陶晓秋,杜顺莲,李维娜.近红外光谱法预测烟草中硫含量的研究[J].烟草科技,2004,37(8):33-35. 被引量:26
  • 2王家俊,罗丽萍,李辉,杨勇.FT-NIR光谱法同时测定烟草根、茎、叶中的氮、磷、氯和钾[J].烟草科技,2004,37(12):24-27. 被引量:54
  • 3王国东,束茹欣,张建平,倪力军.不同产地国产烤烟近红外光谱的特征分析及其模式识别[J].烟草科技,2006,39(5):36-40. 被引量:42
  • 4MAHA HANA,MCCLURE W F.Applying artificial neural networks.Ⅱ.Using near infrared data to classify tobacco types and identify native grown tobacco[J].J Near Infrared Spectra,1997 (5):19-25.
  • 5梁逸曾,俞汝勤.分析化学手册(第二版)第十分册[M].北京:化学工业出版社,2000:328-329,260-267.
  • 6A CANDOLFI,R DE MAESSCHALCK,D JOUAN-RIMBAUD.The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra[J].J.Pharma Biome Anal,1999,21:115-132.
  • 7A SAVITZKY,M J E GOLAY,Smoothing and differentiation of data by simplified least squares procedures[J].Anal Chem,1994,36:1627-1639.
  • 8A CANDOLFI,W WU,D L MASSART,et al.Comparison of classification approaches applied to NIR-spectra of clinical study lots[J].J Pharma Biom Anal,1998,16:1329-1347.
  • 9MAHA H, MCCLURE W F. Applying artificial neural networks. Ⅱ. Using near infrared data to classify tobacco types and identify native grown tobacco [ J ]. J Near Infrared Spectra, 1997 (5) : 19-25.
  • 10LO S C. Rapid classification and blend analysis of tobacco mixtures using near IR and artificial neural networks [J].CORESTA, 1995(3-4) :12-13.

共引文献64

同被引文献110

引证文献11

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部