期刊文献+

鸭瘟病毒疫苗株与强毒株诱导雏鸭IFN-α mRNA在肝脏中表达的动态定量研究 被引量:3

Dynamics of IFN-α mRNA expression in liver of ducks infected with duck plague virus of different virulence
下载PDF
导出
摘要 本研究旨在探讨不同毒力的鸭瘟病毒(DPV)感染对机体IFN-αmRNA表达水平的影响,为DPV的感染与免疫机制提供理论依据。采用Real-time PCR对DPV弱毒株及强毒株接种雏鸭肝脏中的IFN-α mRNA表达水平及病毒荷载量进行动态定量检测,结果显示,弱毒株能引起IFN-αmRNA在肝脏中快速、持续高水平表达;与空白对照相比,在接种后3h上升4倍,9h达到峰值(18.5倍),12h~144h保持在7.8~12.6倍之间,显著抑制了弱毒株的增殖,病毒荷载量较低,表现出感染的自限性;而强毒株只能引起IFN-α mRNA在肝脏中短时间、低水平表达,在感染后72h才达到峰值,为空白对照的4.1倍,持续至132h,以后迅速下降,至144h(濒死时)仅为2.0倍,致使强毒株在肝脏中快速增殖,病毒荷载量与鸭瘟的发病过程密切相关。这些结果提示鸭瘟弱毒株能诱导肝细胞高水平表达IFN-αmRNA,有助于机体建立有效的免疫保护,而强毒株可能通过某种机制抑制IFN-α的表达,利于其建立感染。本研究结果为进一步阐明鸭瘟病毒感染与免疫的分子机制提供了有价值的实验数据。 To understand the mechanisms of DPV infection and immunity, the IFN-α mRNA expression in liver was investigated after infection with virulent and attenuated duck plague virus. Ducks were inoculated with either virulent or attenuated DPV, and virus load and IFN- α mRNA levels were monitored by real-time PCR method. High level and persistent IFN- α mRNA expression in liver (7.8 to 18 folds increase) could be induced by attenuated DPV. The attenuated DPV replicated in liver with a relative low copy number. In comparison, the virulent DPV induced a short time and low level IFN-α mRNA expression with up to 4.1-fold increase but decreased gradually. At the same time, the virus load increased dramatically. These results indicated that high level expression of IFN-α in liver induced by attenuated DPV could enhance immunity against DPV infection, while virulent DPV would establish infection by, at least partly, blocking the IFN- α expression.
出处 《中国预防兽医学报》 CAS CSCD 北大核心 2008年第8期647-650,共4页 Chinese Journal of Preventive Veterinary Medicine
基金 “十一五”国家科技支撑计划重大项目(2006BAD06A11)
关键词 鸭瘟病毒 Α干扰素 MRNA 荧光定量PCR duck plague virus alpha-interferon mRNA Real-time PCR
  • 相关文献

参考文献15

  • 1Hiscott J. Another detour on the Toll road to the interferon antiviral response [J]. Nat Struct Mol Biol, 2004, 11 (11): 1028-1030.
  • 2Levy D E, Garc f a-Sastre A. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion [J]. Cytokine Growth Factor Rev, 2001, 12: 143-156.
  • 3Mattana P, Viscomi G C. Variations in the interferon-inducing capacity of Sendai virus subpopulations [J]. J Interferon Cytokine Res, 1998, (18): 399-405.
  • 4Gttha-Thakurta N, Majde J A. Early induction ofproinflammatory cytokine and type I interferon mRNAs following Newcastle disease virus, poly [rI:rC], or low-dose LPS challenge of the mouse [J]. J Interferon Cytokine Res, 1997, 17(4): 197-204.
  • 5Huang Z, Krishnamurthy S, Panda A, et al. Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist [J]. J Virol, 2003, 77(16): 8676- 8685.
  • 6Qu e r e P, Rivas C, Ester K, et al, Abundance of/FN-alpha and IFN-gamma mRNA in blood of resistant and susceptible chickens infected with Marek's disease virus (MDV) or vaccinated with turkey herpesvirus; and MDV inhibition of subsequent induction of IFN gene transcription [J], Arch Virol, 2005, 150(3): 507-519.
  • 7Rong Q, Alexander TS, Koski GK, et al. Multiple mechanisms for HSV-1 induction of interferon alpha production by peripheral blood mononuclear cells [J]. Arch Virol, 2003, 148(2): 329-344.
  • 8Pedersen E B, Haahr S, Mogensen S C. X-linked resistance of mice to high doses of herpes simplex virus type 2 correlates with early interferon production [J]. Infect Immun, 1983, 42(2): 740- 746.
  • 9Yang F L, Jia W X, Yue H, et al. Development of quantitative Real-time polymerase chain reaction for duck enteritis virus DNA [J]. Avian Disease, 2005, 49: 397-400.
  • 10杨发龙,岳华,谢秀兰,贾文祥.鸭GAPDH基因实时荧光定量PCR方法的建立[J].西南民族大学学报(自然科学版),2007,33(1):92-95. 被引量:10

二级参考文献32

  • 1齐雪峰,罗薇,杨晓燕,刘内生.鸭瘟病理组织学动态观察[J].中国预防兽医学报,2006,28(1):44-47. 被引量:4
  • 2胡薛英,谷长勤,程国富,周诗其,苏敬良,杨健.应用单克隆抗体的免疫组织化学法研究雏鸭体内鸭瘟病毒的分布[J].中国预防兽医学报,2006,28(3):320-322. 被引量:5
  • 3[1]HIGUCHI R,DOLLINGER G,WALSH PS,et al.Simultaneous amplification and detection of specific DNA sequences[J].Biotechnology,1992,10:413-417.
  • 4[2]DUSSAULT AA,POULIOT M.Rapid and simple comparison of messenger RNA levels using real-time PCR[J].Biol Proced.Online,2006,8(1):1-10.
  • 5[3]DALLAS PB,GOTTARDO NG,Firth M J,et al.Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR-how well do they correlate?[J].BMC Genomics.2005(1):59.
  • 6[4]BUDHIA S,HARING LF,MCCONNELL I,et al.Quantitation of ovine cytokine mRNA by real-time RT-PCR[J].J Immunol Methods,2006,309(1-2):160-172.
  • 7[5]RADONIC A,THULKE S,MACKAY IM,et al.Guideline to reference gene selection for quantitative real-time PCR[J].Biochem Biophys Res Commun.,2004,313(4):856-862.
  • 8[6]MACKAY IM,ARDEN KE,NITSCHE A.Real-time PCR in virology[J].Nucleic Acids Res.,2002,30(6):1292-1305.
  • 9[7]PUGNALE P,LATORRE P,ROSSI C,et al.Real-time multiplex PCR assay to quantify hepatitis C virus RNA in peripheral blood mononuclear cells[J].J Virol Methods.2006,133(2):195-204.
  • 10[8]REGIS S,GROSSI S,LUALDI S,et al.Diagnosis of Pelizaeus-Merzbacher disease:detection of proteolipid protein gene copy number by real-time PCR[J].Neurogenetics,2005,6(2):73-78.

共引文献27

同被引文献21

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部