期刊文献+

基于MICA-FDA的水压试验机故障诊断方法研究 被引量:4

Research on fault diagnosis method for hydrostatic tube tester based on MICA-FDA
下载PDF
导出
摘要 由于水压试验机机理建模的复杂性,很难从机理方面对其生产过程进行故障诊断,因此利用钢管水压试验系统过程变量多、打压速度快、短时间内能够产生大批数据信息的特点,采用基于数据的多向Fisher判别分析(MFDA)方法对其进行故障诊断。在建立MFDA模型之前,先采取多向独立成分分析(MICA)方法去除变量之间的相关性,并且提取少数驱动过程本身的关键变量,经过MICA变换后的数据用以建立MFDA模型可以提高故障诊断精度。综上,本文提出了一种基于MICA-FDA的方法用于水压试验机打压过程的故障诊断。采用水压试验机生产过程的几类故障数据对该方法进行验证,结果表明该方法具有很好的故障诊断性能。 Due to the complexity of hydraulic tube tester modelling, it is difficult to diagnose the production process fault from the mechanism. Considering that hydraulic tube tester process can be characterized as a data-rich process and it can generate a large number of process measurement data on many variables in short time, a data mining based muhiway independent component analysis and multiway fisher discriminant analysis (MICA-FDA) method is devel- oped for the fault diagnosis in hydraulic tube tester process, where MICA models are adopted to find the underlying components from normal process data and remove the collinearity of the variables, and then MFDA models are built for fault diagnosis from the various known fault data. The proposed method was applied to a hydraulic tube tester production process to verify its effectiveness in fault diagnosis.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第8期1593-1597,共5页 Chinese Journal of Scientific Instrument
基金 "973"计划子课题(2002CB312200) 国家自然科学基金(60774068)资助项目
关键词 水压试验机 故障诊断 独立成分分析 FISHER判别分析 steel tube hydrostatic test machine fault diagnosis independent component analysis Fisher discriminant analysis
  • 相关文献

参考文献14

  • 1申正曙,杜广玮.DEMAG钢管水压试验机的工作原理及其故障分析[J].钢管,2000,29(2):22-26. 被引量:13
  • 2YU Y Q, HUANG Y, MIAO H X, et al. The hydraulic test system of steel pipe controlled by neural fuzzy PID controller[J]. 2005 IEEE Conference on Control Applications, Toronto Canada, 2005:266-271.
  • 3赵静一,陈卓如,王益群,上官倩芡.水压机液压系统主缸无力的FTA分析[J].燕山大学学报,1999,23(1):7-10. 被引量:11
  • 4CHIANG L H, RUDDELL E L, BRAATZ R D. Fault detection and diagnosis in industrial systems [ M ]. London: Springer-Verlag, 2001.
  • 5CHIANG L H, RUDDELL E L, BRAATZ R D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis [ J ]. Chemometrics and Intelligent Laboratory Systems, 2000,50:243-252.
  • 6HYVARINEN A, OJA E. Independent component analysis : Algorithms and applications [ J ]. Neural Networks, 2000,13:411-431.
  • 7JIANG L Y, WANG SH Q. Fault diagnosis based on independent component analysis and Fisher disciminant analysis [ C ]. Proceeding of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 2004:26-29.
  • 8YOO C Y, LEE D S, VANROLLEGHEM P A. Application of muhiway ICA for on-line process monitoring of a sequencing batch reactor[ J]. Water Research, 2004,38 (7) :1715-1732.
  • 9尹克重,龚卫国,李伟红,梁毅雄.基于小波变换和ICA的人脸识别方法[J].仪器仪表学报,2005,26(z2):412-415. 被引量:10
  • 10AMARI S L, CICHOCHI A, YANG H. A new learning algorithm for blind source separation [ J ]. Advances in Neural Information Processing Systems, 1996, 8. 757-763.

二级参考文献12

  • 1郭宝峰,任运来,赵静一,张齐生,顾煜基.10000KN封头冲压液压机的技术改造[J].锻压技术,1996,21(2):40-42. 被引量:3
  • 2史定国 嵇光国.液压系统故障诊断与维修技术[M].北京:机械工业出版社,1990.144-185.
  • 3(美)维齐利WE.故障树手册[M].北京:原子能出版社,1987.116-136.
  • 4[1]Turk M, Pentland A. Eigenfaces for recognition. J.Cog. Neurosci. , 1991,3(1):71~86.
  • 5[2]Bartlett M, Lades H, Sejnowski T. Independent component representations for face recognition. Proceeding of the SPIE Symposium on Electronic Imaging:Human Vision and Electronic Imaging, SPIE Press, 1998.
  • 6[3]Zhao W, Chellappa R, Phillips P J. Subspace linear discriminant analysis for face recognition. Tech Report CAR-TR-914, Center for Automation Research,University of Maryland, 1999.
  • 7[4]Yang M H. Kernel eigenfaces vs kernel fisherfaces : face recognition using kernel methods. Proceedings of International Conference on Automatic Face and Gesture Recognition, Washington DC, USA 2002,215~220.
  • 8[5]Bell A, Sejnowski T. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995, 7(6) :1129~1159.
  • 9[6]Bartlett M S, Movellan J R. Face Recognition by independent component analysis [J]. Neural Networks,2002,13(16): 1450~1463.
  • 10王春行.液压伺服控制系统[M].北京:机械工业出版社,1993..

共引文献29

同被引文献23

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部