期刊文献+

基于模糊控制及遗传算法的人工免疫入侵检测算法 被引量:1

INTRUSION DETECTION ALGORITHMS OF ARTIFICIAL IMMUNE SYSTEM BASED ON FUZZY CONTROL AND GENETIC ALGORITHM
下载PDF
导出
摘要 针对反向选择算法在面对大量的网络通信数据或具有多个分离特征区间网络通信数据时的无效性,提出了基于模糊控制及遗传算法的人工免疫入侵检测算法,利用模糊控制原理对抗体进行浓缩,并通过遗传算法进化种群,从而使得抗体的数量得到控制且检测效率较高。 In view of the ineffectivity of the negative selection algorithm when it faces the massive network correspondence data or the data with many separation characteristic sectors,intrusion detection algorithms of artificial immune system based on fuzzy control and genetic algo- rithm are proposed. The fuzzy control theory is 'applied to control the quantity of the immune body, and the population is evolved by genetic algorithm for higher detection efficiency when the quantity is definite.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第7期82-83,102,共3页 Computer Applications and Software
基金 湖北省教育厅重点科研项目基金(2004D006)
关键词 反向选择算法 模糊控制 遗传算法 Negative selection algorithm Fuzzy control Genetic algorithm
  • 相关文献

参考文献5

  • 1Hofmeyr S, Forrest S. Architecture for an Artificial Immune System. Evolutionary Computation ,2000,7 ( 1 ) :45 - 68.
  • 2Kim J,Bentley P. An Evaluation of Negative Selection in an Artificial Immune System for Network Intrusion Detection. In Genetic and Evolutionary Computation Conference 2001 ,San Francisco,CA,2001:1330 - 1337.
  • 3Jong K D. Using Genetic Algorithms for Concept Learning, Machine Learning, 13 ( 2/3 ) : 161 - 188.
  • 4Cox IJ. Secure Spectrum Watermarking for Multimedia [ C ]. IEEE Trans on Images Processing, 1997,6( 12 ) : 1673 - 1687.
  • 5Jong K D. Using Genetic Algorithms for Concept Learning [ M]. 13(2/ 3) :161 - 188.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部