期刊文献+

加权Bergman空间上的加权复合算子

Weighted composition operator on weighted Bergman spaces
下载PDF
导出
摘要 定义了加权Bergman空间以及加权Bergman空间上的加权复合算子,前者是经典Bergman空间的推广.利用(紧)Carleson测度、广义计数函数刻画了加权Bergman空间上加权复合算子的有界性、紧性. This paper introduces weighted Bergman spaces and weighted composition operator, which is defined on Bergman spaces, and describes the boundedness andcompactness of weighted composition operators by using compact Carleson measure generalized Nevanlinna counting function.
机构地区 四川理工学院
出处 《西南民族大学学报(自然科学版)》 CAS 2008年第4期649-652,共4页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 加权BERGMAN空间 加权复合算子 CARLESON测度 广义计数函数 weighted Bergman space weighted composition operator compact Carleson measure generalized Nevanlinna counting function
  • 相关文献

参考文献6

  • 1COWEN C C. An analytic Toeplitz operator that commute with a compact operator and related class of Toeplitz operators[J]. J Funct Ann, 1980, 36: 168-184.
  • 2CONTRESS M D, Weighted composition operators on Hardy spaces[J]. J Math Anal Appl, 2001,263: 224-233.
  • 3CHOA J S. Product of composition and Toeplitz operators[J]. J Math Anal Appl, 2003, 281 : 320-331.
  • 4ZHU K. Operator theory in function space[M]. New York: Marcel-Dekker, 1990.
  • 5STANON C S. Counting function and majorization theroems for Jenson measures[J]. Paci J Math, 1986, 125: 459-468.
  • 6COWEN C C, MACCLUER B D. Composition operator on space of analytic functions[M]. Boca Raton: CRC Press, 1995.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部