期刊文献+

铅黄铜超塑性能的人工神经网络预测 被引量:1

Superplastic Performance Prediction of Lead Brass Based on Artificial Neural Network
下载PDF
导出
摘要 利用人工神经网络对铅黄铜超塑性能进行了预测研究,通过对试样在不同超塑性拉伸条件下的性能进行学习,建立了拉伸条件与性能的BP网络预测模型。结果表明,所建模型可以较好地反映超塑性拉伸条件与性能间的内在规律,预测值和试验结果吻合良好,其最大误差不超过10%,人工神经网络用于铅黄铜超塑性能的预测具有可行性和有效性。 The superplastic performance prediction of lead brass was studied based on artificial neural network. Through studying the performance of lead brass samples under superplastic tension conditions, the prediction model of BP neural network was founded. The results show that the founded model can reflect the relationship between superplastie tension conditions and performance, and predicting values agree well with tests in accordance less than 10%. It indicates that the prediction of lead brass superplasticity using artificial neural network is effective and feasible.
出处 《热加工工艺》 CSCD 北大核心 2008年第14期92-95,共4页 Hot Working Technology
关键词 铅黄铜 超塑性 人工神经网络 预测模型 lead brass superplasticity artificial neural network prediction model
  • 相关文献

参考文献7

二级参考文献22

  • 1王慧 曾令可.材料科学与人工神经网络[J].华南理工大学研究生学报,1999,13(4):92-92.
  • 2毛骏飙.Yb-Ce-TZP增韧陶瓷材料的研究:博士学位论文[M].华南理工大学,1997..
  • 3李明,曾令可,张明.人工神经网络及其在窑炉动态温度场的模拟研究[J].陶瓷学报,1997,18(1):27-31. 被引量:9
  • 4航空航天材料咨询小组.航空航天材料咨询报告[M].北京:国防工业出版社,1999..
  • 5Zhang Li I,Nature,1998年,395卷,37页
  • 6Sonnino,Carlo B,Ford,et al.Potentiometric and potentiostatic determination of the corrosion rate of welded 2519 aluminum alloy [J].ASTM Special Technical Publication,1991,(1134):132-140.
  • 7Devicent S M.Devletian J H,Gedon S A.Weld properties of the newlydeveloped 2519-T87 aluminum armor alloy [J].Welding Journal,1988,67(7):33-43.
  • 8Stanislaw Dymek,Marek Dollar.TEM investigation of age-hardenable Al 2519 alloy subjected to stress corrosion cracking tests [J].Materials Chemistry and Physics,2003,82(1):1-3.
  • 9Chun M S,Biglou J,et al.Using neural networks to predict parameters in the hot working of aluminum alloys [J].Journal of Materials Processing Technology,1998,86:245-251.
  • 10Korczak P,Dyja H,et al.Using neural network models for predicting mechanical properties after hot plate rolling processes [J].Journal of Materials Processing Technology 1998,80-81:481-486.

共引文献181

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部