摘要
周期与线性复杂度的稳定性是衡量周期序列伪随机性质的一个重要指标.本文在给出广义自缩序列的线性复杂度的上界之后,借助伽罗瓦域中的若干理论,分析了该类序列的线性复杂度的稳定性,包括广义自缩序列在单符号插入、删除变换和少量符号替换操作下的线性复杂度的变化情况,给出了变化后序列的线性复杂度的具体表达式.
The stability of the period and the linear complexity is an important index for evaluating the pseudo-randomness of the periodic sequences. In this paper, an upper bound of the linear complexity of the generalized self-shrinking sequences is given. Then the stability of the linear complexity of the generalized self-shrinking sequences is investigated by some theories of the Galois field, in which the linear complexity of the periodic sequences obtained by either deleting or inserting one symbol and substituting small symbols within one period are discussed. And the formulized expressions of the linear complexity of the periodic sequences obtained are given.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2008年第7期1373-1377,共5页
Acta Electronica Sinica
基金
国家自然科学基金(No.60473029,60673072)
国家自然青年科学基金(No.60503010)
关键词
线性复杂度
单符号删除
单符号插入
符号替换
linear complexity
one-symbol deletion
one-symbol insertion
symbol substitution