期刊文献+

广义自缩序列的线性复杂度 被引量:1

Linear Complexity of the Generalized Self-Shrinking Sequences
下载PDF
导出
摘要 周期与线性复杂度的稳定性是衡量周期序列伪随机性质的一个重要指标.本文在给出广义自缩序列的线性复杂度的上界之后,借助伽罗瓦域中的若干理论,分析了该类序列的线性复杂度的稳定性,包括广义自缩序列在单符号插入、删除变换和少量符号替换操作下的线性复杂度的变化情况,给出了变化后序列的线性复杂度的具体表达式. The stability of the period and the linear complexity is an important index for evaluating the pseudo-randomness of the periodic sequences. In this paper, an upper bound of the linear complexity of the generalized self-shrinking sequences is given. Then the stability of the linear complexity of the generalized self-shrinking sequences is investigated by some theories of the Galois field, in which the linear complexity of the periodic sequences obtained by either deleting or inserting one symbol and substituting small symbols within one period are discussed. And the formulized expressions of the linear complexity of the periodic sequences obtained are given.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第7期1373-1377,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60473029,60673072) 国家自然青年科学基金(No.60503010)
关键词 线性复杂度 单符号删除 单符号插入 符号替换 linear complexity one-symbol deletion one-symbol insertion symbol substitution
  • 相关文献

参考文献8

  • 1Uehara S and Imamura K. Linear complexity of periodic sequences obtained from GF(q) sequences with period q^n-1 by one-symbol deletion [ J ]. IEICE Trans. Fundamentals, 1996, E79-A: 1739 - 1740.
  • 2叶顶峰,戴宗铎..两个符号替换下周期序列的线性复杂度[A]....密码学进展-CHINA CRYPT’96(中国密码学学术会议论文集)[C]..,,1996..7-9..
  • 3Uehara S and Imamura K. Linear complexity of periodic sequences obtained from an m-sequence by two-symbol substitution[ A] .In Proc. 1998 Int. Symp. Information Theory and It's Applications ( ISITA' 98) [ C ]. Mexico City, Mexico: 1998,690 - 692.
  • 4Shaoquan Jiang, Zongduo Dai, and Kyoki Imamura. Linear complexity of periodic sequences obtained from a Periodic Sequence by Either Substituting,Inserting,or Deleting k Symbols Within One Period [J ]. IEEE Trans Inform. Theory, 2000, 46 (3):1174- 1177.
  • 5Yupu Hu and Guozhen Xiao. Generalized Self-shrinking Sequences[ J]. IEEE Transaction on Information Theory,2004, 50 (4) :714 - 719.
  • 6R Lidl and H Niederreiter. Fmite fields[ M]. In Encyclopedia of Mathematics and Its Applications, vol. 20. Reading, MA: Addison-Wesley, 1983.
  • 7Simon R Blackburn. The linear complexity of the Self-Shrinking generator[ J ]. IEEE Trans. Inform. Theory, 1999, 45 (6) : 2073 - 2077.
  • 8丁存生,肖国镇.流密码学及其应用[M].国防工业出版社,1992.5.

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部