期刊文献+

GTN损伤模型对C-Mn钢缺口拉伸试样延性断裂的预测 被引量:10

PREDICTION OF DUCTILE FRACTURE IN TENSILE SPECIMENS WITH NOTCHES FOR A C-Mn STEEL BY USING GTN DAMAGE MODEL
下载PDF
导出
摘要 用GTN(Gurson,Tvergaard,Needleman)损伤模型对不同缺口根半径的C-Mn钢缺口圆棒拉伸试样的延性断裂进行有限元模拟预测。结果表明,当缺口根半径R≤2 mm时,GTN模型对缺口拉伸时的最大载荷Pm、起裂载荷Pi、断裂载荷Pf和断裂功E的预测值与实验值较为接近。而当R>2 mm后,预测值与实验值的偏差变大。其原因在于GTN模型是基于微孔洞长大和聚合的延性断裂机理而建立,对于根半径较小,促使孔洞长大的三向应力度较高的缺口试样较为适用。GTN模型预测的三个特征载荷,尤其是表征韧性的断裂功E的值总体上高于实验测定值,并且其预测的延性起裂位置在R≥1 mm时也与实验观察不一致。其原因是GTN模型未考虑实际材料组织中具体的夹杂物/孔洞的尺寸、形态、分布和方位对损伤演化和断裂过程的影响。 The ductile fracture in tensile specimens with various notch root radiuses for a C-Mn steel has been predicted by using GTN (Gurson, Tvergaard, Needleman) damage model. The results show that, in the case of notch radius R ≤2 mm, the prediction values of the maximum load Pm, fracture initiation load Pi, fracture load Pf and fracture work E are close to the experimental values. But in the case of R 〉 2 mm, the difference between the prediction and experimental values becomes large. The reason for this is that GTN model is based on the ductile failure mechanism of void growth and coalescence, and it is suitable for the specimens with small notch radius that has high stress triaxiality for void growth. The values of GTN model prediction for the three characteristic loads, especially for the fracture work E characterizing toughness are generally higher than the experimental values. And also the prediction for the fracture initiation locations is not consistent with the experimental observation in the case of R ≥ 1 mm. The reasons for these are that the effects of the size, morphology, distribution and orientation of the inclusions/voids on the damage evolution and fracture process have not been considered in the GTN model.
出处 《机械强度》 EI CAS CSCD 北大核心 2008年第4期647-652,共6页 Journal of Mechanical Strength
基金 国家“863”计划项目(2006AA04Z413) 教育部新世纪优秀人才计划项目(NCET-06-0414) 上海市重点学科建设项目(B503)资助~~
关键词 损伤模型 延性断裂 韧性 缺口试样 夹杂物 Damage model Ductile fracture Touglmess Notched specimen Inclusion
  • 相关文献

参考文献10

  • 1Jablokov V, Goto D M, Koss D A. Damage accumulation and failure of HY-100 steel [ J]. Metallurgical and Materials Transactions A, 2001, 32A(10) : 2985-2994.
  • 2Gurson A L. Continuum of ductile rupture by void nucleation and growth : Part I Yield criteria and flow rules for porous ductile media[J]. J. Eng. Tater. Tech., 1977, 99(1): 2-55.
  • 3Needleman A, Tvergaard V. A analysis of ductile rupture in notched bars [J]. J. Mech. Phys. Solids, 1984, 32(4): 461-490.
  • 4Kim Jinkook, Gao Xiaosheng, Srivatsan T S. Modeling of void growth in ductile solids: effects of stress triaxiality and initial poresity[J]. Engineering Fracture Mechanics, 2004, 71(3): 379-400.
  • 5Bonora Nicola, Gentile Domenico, Pirondi A, et al. Ductile damage evolution under triaxial state of stress : theory and experiments [J]. International Journal of Plasticity, 2005, 21(6): 981-1007.
  • 6Tvergarrd V. Influence of voids on shear band instabilities under plane strain conditions [ J ]. International Journal of Fracture, 1981, 17 ( 3 ) : 389-395.
  • 7王国珍,杨伟顺,马进,陈剑虹.初始损伤对不同钢组织延性起裂韧性的影响[J].安全与环境学报,2005,5(6):104-107. 被引量:2
  • 8Bao Yingbin, Wicrzbicki Tomasz. On fracture lotus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98.
  • 9Wang GZ, Liu Y G, Chen J H. Investigation of cleavage fracture initiation in notched specimen of a C-Mn steel with carbides and inclusions [J]. Material Science and Engineering A, 2004, 369(1-2): 181-191.
  • 10Mishnaevsky Jr L, Derrien K, Baptiste D. Effect of microstructure of particle composites on the damage evolution: probabilistic and numerical analysis[J]. Composite Science and Technology, 2004, 64(9) : 1805- 1818.

二级参考文献10

  • 1Kiser M T, Zok F W and Wilkinson D S. Plastic flow and fracture of a particulate metal matrix composite[J]. Acta Mater, 1996, 44( 12):3465 ~ 3476.
  • 2Tohgo K, Fukuhara D and Hadano A. The influence of debonding damage on fracture toughness and crack-tip field in glass-particle-reinforced nylon 66 composites[J]. Composites Science and Technology, 2001, 61(5): 1005 ~ 1016.
  • 3Srivastava V K, Maile K, Bothe K, et al. Effect of damage on flexural modulus of C/C-SiC composites[J]. Materials Science and Engineering A, 2003, 354(2): 292 ~ 297.
  • 4Talukdar P, Sen S K and Ghosh A K. Effect of fatigue damage on the dynamic fracture toughness of En-8-Grade steel[J]. Metallurgical and Materials Transactions A, 2001, 32A (10): 2547 ~ 2552.
  • 5Ozturk A. The influence of cyclic fatigue damage on the fracture toughness of carbon-carbon composites[J]. Composites Part A, 1996, 27A(4): 641 ~ 646.
  • 6Moskovic R, Lingham I J, Crocker A G, et al. An experimental and theoretical consideration of the effect of prior creep damage on the heat affected zone fracture toughness of CrMoV steel [J]. Engineering Fracture Mechanics, 2004, 71(4): 587 ~ 599.
  • 7Jablokov V, Goto D M, Koss D A. Damage accumulation and failure of HY-100 steel[J]. Metallurgical and Materials Transactions A, 2001,32A(12): 2985 ~ 2994.
  • 8Rakin M, Cvijovic Z, Grabulov V, et al. Prediction of ductile fracture initiation using micromechanical analysis [J]. Engineering Fracture Mechanics, 2004, 71(3): 813 ~ 827.
  • 9Bandstra J P, Koss D A, Geltmacher A, et al. Modeling void coalescence during ductile fracture of a steel [J]. Materials Science and Engineering, 2004, A336(2): 269 ~ 281.
  • 10Griffith J R and Owen D R J. An elastic-plastic stress analysis for a notched bar in plane strain bending[J]. Journal of the Mechanics and Physics of Solids, 1971, 19(3) :419~431.

共引文献1

同被引文献89

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部