期刊文献+

基于免疫网络的遥感影像分类算法 被引量:1

Classification of remote sensing image based on immune network
下载PDF
导出
摘要 基于独特型免疫网络原理,提出了一种新型的分区记忆模式人工独特型网络模型,并利用其对卫星遥感数据进行了分类。该模型在结构上将免疫网络的记忆抗体划分为特异记忆抗体区和自由记忆抗体区。前者的主要功能是记忆各类别抗原的特异特征,后者为前者提供各种类型的抗体源。记忆抗体间按照亚动力学原理进行调节,实现免疫网络的寻优过程。基于上述分区,它在初次免疫响应过程中实现网络的搭建和训练,在二次免疫响应过程中实现信息提取。最后利用该模型对ETM数据进行地物分类,并与传统分类方法进行对比。结果表明:该模型的总分类精度和Kappa系数分别是92.6%和0.91,优于传统分类方法。 Based on idiotypic immune network theory,a Regional-memory-pattern Artificial Idiotypic Network(RAIN) is proposed to classify multi-spectral remote sensing image.The immune memory antibodies of RAIN model are divided into two regions: specific memory antibody and free memory antibody.Specific memory antibody has several specific subregions sensitive to specific antigens,while free memory antibody region supplied kinds of specific memory antibodies for the former region.The adjustment and optimization of RAIN are realized according to antibody metdynamics.The initialization and training of RAIN are realized in the primary immune response process,and information extraction is executed in the second immune response process.At last, RAIN is used for the classification of ETM data.Accuracy and Kappa coefficient of our method are 92.6% and 0.91 respectively, while that of traditional Parallelepiped,Maximum Likelihood and Minimum Distance are 81.8%,82.2%,71.8%,and 0.78,0.78,0.65. The results show that RAIN is superior to three traditional classification algorithms.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第23期24-27,共4页 Computer Engineering and Applications
基金 "十一五"国家科技支撑计划重点项目No.2006BAB07B00~~
关键词 遥感影像分类 人工免疫 独特型网络 分区记忆模式 remote sensing image classification artificial immune idiotypic network regional-memory-pattern
  • 相关文献

参考文献13

  • 1Jerne N K.Towards a network theory of the immune system[J].Annual Immunology, 1974,125C:373-389.
  • 2Timmis J,Neal M,Hunt J.An artificial immune system for data analysis[J].Biosystems, 2000,55 ( 1 ) : 143-150.
  • 3de Castro N L,Von Zuben F J.An evolutionary iuunune network for data clustering[C]//Proceedings of the 6th Brazilian Symposium on Neural Networks,2000,1:84-89.
  • 4Amanda M W,Uwe A,Jonathan M G.Idiotypie immune networks in moblile-robot control[J].IEEE Transactions on Systems, Man,and Cyb emetics, PartB : Cybernetic s, 2007,37 ( 6 ) : 1581 - 1598.
  • 5Akio I,Yuji W,Yoshiki U.Fault diagnosis of plant systems using immune networks [C]//Proceedings of the 1994 IEEE International Conference on Multisensor Fusion and Integration for Intelligent System, 1994: 34-42.
  • 6Xiong Hao,Sun Cai-xin.Artificial immune network classification algorithm for fault diagnosis of power transformer[J].IEEE Transaction on Power Delivery, 2007,22(2) : 930-935.
  • 7赵林惠,戴亚平,付东梅,董芳艳.一种基于独特型网络的入侵检测方法[J].北京理工大学学报,2006,26(9):809-812. 被引量:1
  • 8Atkinson P M,Lewis P.Geostafistical classification for remote sensing:an introduction[J].Computer & Geoseiences,2000,26:361-374.
  • 9Varela F J,Coutinho A.Second generation immune networks[J].Immunol Today, 1991,12(5) : 159-166.
  • 10Farmer J D,Packard N H,Perelson A S.The immune system,adaptation, and machine learning[J].Physica D: Nonlinear Phenomena, 1986,22( 1/3 ) : 187-204.

二级参考文献9

  • 1HASI Bagan MA Jianwen LI Qiqing HAN Xiuzhen LIU Zhili.Self-organizing feature map neural network classification of the ASTER data based on wavelet fusion[J].Science China Earth Sciences,2004,47(7):651-658. 被引量:7
  • 2Jerne N K.Towards a network theory of the immune system[J].Annals of Immunology,1974,125(C):373 -389.
  • 3Farmer J D,Packard N H,Perelson A S.The immune system,adaptation,and machine learning[J].Physica,1986,22:187-204.
  • 4Hunt J,Cooke D.Learning using an artificial immune system[J].Journal of Network and Computer Applications:Special Issue on Intelligent System Design and Application,1996,19:189-212.
  • 5Nunes L,Fernando J.An evolutionary immune network for data clustering[C] // Proceedings of Brazilian Symposium on Neural Networks.Los Alamitos:IEEE Computer Society Press,2000,1:84-89.
  • 6Morrison T,Aickelin U.An artificial immune system as a recommender for web sites[C] // The 1st International Conference on Artificial Immune Systems.Canterbury,UK:Springer-Verlag,2002:161-169.
  • 7Nunes L,Timmis J.An artificial immune network for multimodal optimization[C] //Proceedings of the Congress on Evolutionary Computation,Part of the 2002 IEEE World Congress on Computational Intelligence.Honolulu,Hawaii,USA:Neural Network Society,2002:699-704.
  • 8Aickelin U,Greensmith J,Twycross J.Immune system approaches to intrusion detection-a review[C] // Proceedings of International Conference on Artificial Immune Systems.Catania,Italy:Springer-Verlag,2004:316-329.
  • 9Timmis J,Neal M,Hunt J.An artificial immune system for data analysis[J].Biosystems,2000,55(1):143-150.

共引文献2

同被引文献4

  • 1Kruse F A,Boardman J W,Huntington J F.Comparison of Airborne Hyperspectral Data and EO-1Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing . 2003
  • 2Bemard E,Hubbard,J K, Crowley, et a1.Conparative alteration m ineralmapping using visible to shortwave infrared (0.4-2.4μm) Hyperion, AL, and ASTER in agery. IEEE Transactions on Ceosciences and Remote Sensing . 2003
  • 3刘苗,蔺启忠,王钦军,李慧.基于反射光谱的铜元素地球化学异常研究[J].光谱学与光谱分析,2010,30(5):1320-1323. 被引量:7
  • 4陈玉,蔺启忠,魏永明,王梦飞,李慧.基于野外实测光谱统计分析的蚀变矿物填图[J].光谱学与光谱分析,2010,30(11):3036-3040. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部