期刊文献+

粒子群优化算法中惯性权重的研究进展 被引量:27

Research advances on inertia weight in particle swarm optimization
下载PDF
导出
摘要 粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法。惯性权重是粒子群算法中非常重要的参数,可以用来控制算法的开发和探索能力。简单介绍了标准粒子群优化算法的基本原理,全面综述了现有文献中对惯性权重的研究进展情况。 Particle Swarm Optimization (PSO) is a novel stochastic optimization algorithm based on the simulation of migration and the group model of bird flock in the process of their food-searching,and it can be used to solve optimization problems.Inertia weight is an important parameter in PSO,and it can control the algorithm's exploitation ability and exploration ability.This paper simply introduces the principle of PSO,and overviews the research advances in the inertia weight.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第23期39-41,共3页 Computer Engineering and Applications
基金 江苏省高校自然科学基础研究项目(No.07KJB510032)
关键词 粒子群优化 惯性权重 优化算法 Particle Swarm Optimization(PSO) inertia weight optimization algorithm
  • 相关文献

参考文献18

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//IEEE In- ternational Conference on Neural Networks.Piscataway,NJ: IEEE Press, 1995 : 1942-1948.
  • 2Clerc M.Particle swarm optimization[M].London:ISTE Publishing Company,2006.
  • 3Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proceedings of the IEEE Confferenee on Evolutionary Computation. Piseataway, NJ: IEEE Press, 1998: 69-73.
  • 4Clerc M,Kennedy J.The particle swarm:explosion,stability,and convergence in a muhi-dimensional complex space[J].IEEE Transactions on Evolutionary Computation, 2002,6 ( 1 ) : 58-73.
  • 5Trelea I.The particle swarm optimization algorithm:convergence analysis and parameter selection [J].Information Processing Letters, 2003,85 (6) : 317-325.
  • 6Eberhart R,Shi Y.Comparing inertia weights and constriction factors in particle swarm optilnization[C]//IEEE Congress on Evolutionary Computation.Piscataway: IEEE Service Center,2000: 84-88.
  • 7Shi Y,Eberhart R.Elnpirical study of particle swarm optimization[C]// Proceedings of the 1999 Congress on Evolutionary Computation, 1999: 1945-1950.
  • 8Zheng Yong-ling,Ma Long-hua,Zhang Li-yan,et al.On the convergence analysis and parameter selection in particle swarm optimization[C]//Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi'an, 2003 : 1802-1807.
  • 9崔红梅,朱庆保.微粒群算法的参数选择及收敛性分析[J].计算机工程与应用,2007,43(23):89-91. 被引量:33
  • 10王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:85

二级参考文献45

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 3王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:85
  • 4窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:39
  • 5王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法[J].中国机械工程,2005,16(11):945-948. 被引量:80
  • 6Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1 ) : 58-73.
  • 7Trelea I. The particle swarm optimization algorithm: Convergence analysis and parameter selection[ J ]. Information Processing Letters, 2003, 85(6):317-325.
  • 8Eberhart R, Shi Y. Comparing Inertia Weigthts and Constriction Factors in Particle Swarm Optimization[ C]. IEEE Congress on Evolutionary Computation, Piscataway: IEEE Service Center, 2000. 84-88.
  • 9Kennedy J, Eberhart R. Particle Swarm Optimization[ C]. IEEE Int. Conf. on Neural Networks, Piscataway: IEEE Service Center,1995. 1942-1948.
  • 10Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]. Proc. on Int. Symposium on Micro Machine and Human Science, Piscataway: IEEE Service Center, 1995. 39--43.

共引文献397

同被引文献238

引证文献27

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部