摘要
将Banach-Steinhaus定理推广到拓扑向量空间上.设X,Y为拓扑向量空间,X是第二纲的,若AB0逐点有界,则A是等度连续的.B0表示X到Y的连续线性算子组成的向量空间.
In this paper, Banach-Steinhans theorem in the functional analysis is generalized to the topological vector space. Supposed X and Y are both topological vector spaces and X is of the second category, if0 is pointwise bounded, then must be equicontinuous. Here0 is a topological vector space composed of continuous linear operator.
出处
《大庆石油学院学报》
CAS
北大核心
2008年第4期104-106,共3页
Journal of Daqing Petroleum Institute
基金
河北省教育厅自然科学指导项目(Z2006439)
关键词
拓扑向量空间
完备
第二纲集
逐点有界
等度连续
topological vector space
complete
second category
pointwise bounded
equicontinuous