期刊文献+

连续路径下旋转体的扫描实体造型

Swept volume solid modeling of revolutions on curved trajectories
下载PDF
导出
摘要 以实体造型仿真和工程应用为目的,基于包络理论和边界描述实体造型法,提出了旋转体在连续路径下进行扫描实体造型的一种新方法.该方法针对扫描实体的造型难点,将整个造型过程分为扫描路径的分析(包括连续路径的离散和离散点位置上局部标架的建立)、扫描轮廓的提取(包括各个离散点位置上扫描母体旋转体速度分量的计算和轮廓曲线的提取)、扫描实体包络面的构造(包括对各条扫描轮廓曲线的分组和糅合)以及扫描实体的完整造型(包括对包络面与入口和出口边界的连接).与现有方法相比,该方法能快速有效地以旋转体为扫描母体进行扫描实体造型,在减少计算量的同时保证了造型的精确性. A novel algorithm based on envelop theory and B-rep modeling technique was proposed aiming at the difficulties of swept volume solid modeling for manufacturing. The algorithm was divided into four parts: analysis of trajectory curves including trajectory discretization and reference frame establishment,extraction of swept profiles including evaluation of velocity vectors on revolution generators and calculation of swept profiles at each discretized position, generation of envelop surfaces including the grouping and lofting of swept profiles, and construction of swept volume solids including the combination of swept envelop surface with the ingress and egress surfaces. Experimental results show that the presented algorithm is simpler, more efficient and accurate than other methods.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第7期1135-1139,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60473106,60333010) 国家教育部博士学科点专项基金资助项目(20030335064)
关键词 扫描实体 扫描轮廓曲线 实体造型 数控仿真 包络面 swept volume solid swept profile solid modeling numerical control simulation envelop surface
  • 相关文献

参考文献18

  • 1KIM Y J, VARADHAN G, LIN M C, et al. Fast swept volume approximation of complex polyhedral models [J]. Computer Aided Design, 2004, 36 (11): 1013 - 1027.
  • 2WANG W P, WANG K K. Geometric modeling for swept volume of moving solids [J]. IEEE Computer Graphic Applications, 1986, 6(12): 8-17.
  • 3POTTMANN H, PETERNELL M. Envelopes-computational theory and applications [C]// Proceedings of Spring Conference on Computer Graphics and its Applications. Budmerice: ACM, 2000:3-23.
  • 4MARTIN R, STEPHENSON P. Sweeping of three-dimensional objects [J]. Computer Aided Design, 1990, 22(4) :223 - 234.
  • 5WELD J, LEU M. Geometric representation of swept volume with application to polyhedral objects [J]. International Journal of Robotics Research, 1990, 9 (5) : 105 - 117.
  • 6BLACKMORE D, LEU M. Analysis of swept volume via lie group and differential equations [J]. International Journal of Robotics Research, 1992, 11(6) :516 - 537.
  • 7BLACKMORE D, LEU M, WANG L P. Sweep-envelope differential equation algorithm and its application to NC machining verification [J]. Computer Aided Design, 1997, 29(9): 629-637.
  • 8ABDEL MALEK K, YEH H J. Geometric representation of the swept volume using Jacobian rank-deficiency conditions [J]. Computer Aided Design, 1997, 29 (6): 457 -468.
  • 9ABDEL MALEK K, BLACKMORE D, JOY K I. Swept volumes: foundations, perspectives and applications [J]. Intertional Journal of Shape Modeling, 2004, 23(5):1 -25.
  • 10DU S J, SURMANN T, WEBBER O, et al. Formulating swept profiles for five-axis tool motions [J]. International Journal of Machine Tools and Manufacture, 2005, 45(7-8): 849-861.

二级参考文献5

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部