期刊文献+

不确定时滞系统基于观测器的鲁棒非脆弱控制 被引量:2

Robust non-fragile observer-based control of time-delay systems with uncertain parameters
下载PDF
导出
摘要 为了同时考虑系统参数不确定性和控制器不确定性对系统性能的影响,提出了不确定时滞系统基于观测器的鲁棒非脆弱控制器设计方法.基于Lyapunov-Krasovskii理论,得到系统鲁棒非脆弱控制器存在的充分条件.当控制矩阵为列满秩时,采用矩阵奇异值分解(SVD)的方法,将控制器的存在条件转化为一个严格线性矩阵不等式(LMI)的可解性问题,易于用Matlab/LMI工具箱进行求解.数值算例表明,所设计的控制器对系统参数的不确定性、控制器和观测器的不确定性都具有较好的鲁棒性. The design method of a robust non-fragile observer-based controller for uncertain time-delay systerns was presented to consider the effects on system performances arising from the uncertainties of both parameters and controllers. A sufficient existence condition of the controller was obtained based on Lyapunov-Krasovskii theory. If the control matrix is full column rank, the existence condition is formulated in terms of a linear matrix inequality (LMI) by singular value decomposition (SVD) technique, which can be solved efficiently by employing Matlab/LMI Toolbox. Numerical examples show that the designed controller is robust to the system parametric uncertainties and the controller's and observer's uncertainties.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第7期1189-1193,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60434020,60604003) 浙江省自然科学基金资助项目(Y106373) 浙江省教育厅科研资助项目(Y200701897)
关键词 鲁棒非脆弱控制 观测器 不确定时滞系统 奇异值分解 线性矩阵不等式 robust non-fragile control observer uncertain time-delay system singular value decomposition (SVD) linear matrix inequality (LMI)
  • 相关文献

参考文献9

二级参考文献32

  • 1GERTLER J. Survey of model based fault detection and isolation in complex plants [J]. IEEE Control Systems Magazine, 1988, 8(6): 3-11.
  • 2FRANK P M. Fault diagnosis in dynamic systems using analytical and knowlege-based redundancy-A survey [J]. Automatic, 1991,26:459-474.
  • 3KOKAME H, KOBAYASHI H, MORI T. Robust H∞ performance for linear delay-differential systems with time-varying uncertainties[J]. IEEE, Trans on Automatic Control, 1998,43(2) :223- 226.
  • 4de SOUZA C E, LI Xi. Delay-dependent robust H∞ control of uncertain linear state-delayed systems [J]. Automatica, 1999,35(9): 1313- 1321.
  • 5CAO Yongyan, SUN Youxian, LAM J. Delay-dependent robust H∞ control for uncertain systems with time-varying delays [ J ]. IEE Proc-Control Theory and Applications, 1998, 145(3) : 338 - 344.
  • 6KEEL L H, BHATTACHARYYA S P. Robust, fragile, or optimal[J]. IEEE Trans on Automatic Control, 1997,42(8) : 1098 - 1105.
  • 7FAMULARO D, DORATO P, ABDALLAH C T, et al. Robust non-fragile LQ controller: the static state feedback case [ J]. Int J Control, 2000,73(2):159- 165.
  • 8YANG Guanghong, WANG Jianliang, LIN Chong. H∞ control for linear systems with additive controller gain variation [J]. Int J Control, 2000,73(16):1500- 1506.
  • 9MORGAN B S. The synthesis of linear multivariable systems by state feedback [J]. IEEE Trans Automatic Control, 1964, 9(10): 405--411.
  • 10FALB P L, WOLOVICH W A. Decoupling in the design and synthesis of multivariable control systems[J].IEEE Trans Automatic Control, 1967, 12(6): 651--659.

共引文献60

同被引文献26

  • 1冯毅夫,张庆灵,杨帆.基于观测器的广义时滞系统最优保成本控制[J].东北大学学报(自然科学版),2007,28(4):465-468. 被引量:1
  • 2Xu S Y,Dooren Van P,Stefan R,et al. Robust stability and stabilization for singular systems with state delay and parameter uncertainty[ J ]. IEEE Transactions on Automatic Control, 2002,47 ( 7 ) : 1122-1128.
  • 3Yu L, Xu J M, Han Q L. Optimal guaranteed cost control of singular systems with delayed state and parameter uncertainties [ C ]. Boston, Massachusetts:Proceeding of the 2004 American Control Conference ,2004.
  • 4Zhengguang W, Su H, Chu J. Robust stabilization for uncertain discrete singular systems with state delay [ J ]. Int J Robust Nonlinear Control,2008,18 (16) : 1532-1550.
  • 5Chang S S L,Peng T K C. Adaptive guaranteed cost control of systems with uncertain parameters [ J ]. IEEE Transactions on Automat- ic Control, 1972, AC-17 (4) :474483.
  • 6Yu L,Chu J. An LMI approach to guaranteed cost control of linear uncertain time-delay systems[ J ]. Automatica, 1999,35 ( 6 ) : 1155- 1159.
  • 7SLee Y, Kwon O K, Kown W H. Delay-dependent guaranteed cost control for uncertain state delayed systems[ J ]. Int J Control, Automation and Systems,2005,3 (4 ) :524-532.
  • 8Keel L H,Bhattacharyya S P. Robust,ragile,or ptimal? [J]. IEEE Transactions on Automatic Control, 1997,42 ( 8 ) : 1098-1105.
  • 9Gao Huijun, Shi Peng, Wang Junling. Parameter-dependent robust stability of uncertain timedelay systems[J]. Journal of Computational and Applied Mathematics , 2007,206(1) :366 -373.
  • 10He Yong,Wu Min, She Jinhua, et at. Parameter dependent Lyapunov functional for stability of time delay systems with polytopic-type uncertrainties[J]. IEEE Trans. on Automatic Control , 2004,49(5):828-831.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部