期刊文献+

关于L-拓扑空间中两种新的相对Hausdorff分离性 被引量:2

Two new relative hausdorff separations in L-topological spaces
下载PDF
导出
摘要 定义了L-拓扑空间的相对Kubiak-T2分离性与相对T2分离性。分别给出了相对Kubiak-T2分离性与相对分离性的等价刻划。研究了相对Kubiak-T2分离性与相对T2分离性的性质,包括遗传性,可乘性与L-好的推广。最后对相对Kubiak-T2分离性与相对T2分离性进行了比较。 The definitions of relative Kubiak - T2 separation and relative T2 separation are defined in L - topological spaces, and the characterizations of these separation axioms are given. Some properties of relative Kubiak - T2 separation and relative T2 separation are studied, including the hereditary property, the productive property and L -good extension. Finally,the relation of these two separations and other separations are investigated.
出处 《陕西理工学院学报(自然科学版)》 2008年第2期82-86,共5页 Journal of Shananxi University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(10271069) 渭南师范学院科研基金资助项目(08YKZ053)
关键词 相对Kubiak—T2分离性 相对T2分离性 分子 远域 relative Kubiak - T2 separation relative T2 separation molecule remote - neighborhood
  • 相关文献

参考文献7

  • 1Arhangel'skii A V. Relative topological properties and relative topological space [ J ]. Topology Appl., 1996,70:87-99.
  • 2Arhangel'skii A V ,Gordienko I Y . Relative symmetrizability and metrizabillty[J]. Comment. Math. Univ. Carolinae, 1996,37(4) :757-774.
  • 3Liu Y M ,Luo M K. Fuzzy topology[ M]. Singapore:World Scientific Publishing,1997.
  • 4R Engelking, General Topology [ M ]. Warszawa: Polish Scientific Publisher, 1977.
  • 5李尧龙,赵彬.弱L-fuzzy Hausdorff空间及其性质[J].陕西师范大学学报(自然科学版),2003,31(2):16-19. 被引量:13
  • 6Kubiak T. On L- Tychonoff spaces [ J ]. Fuzzy Sets and Systems, 1995,73:25-53.
  • 7Shi F G. A new approach to L- T2 , L- Urysohn and L- completely hausdorff axioms[ J ]. Fuzzy Sets and Systems ,2006, 157 : 1055-1067.

二级参考文献5

  • 1Engelking R. General topology[M]. Warszawa: Polish Scientific Publishers, 1977.
  • 2Herrilich H, Stercker G E. Category theory [M]. Berlin: Heldermann, 1979.
  • 3Wang Guo-jun. Theory of topological molecular lattices[J]. Fuzzy Sets and Systems, 1992,47(3) :351 --376.
  • 4Steen L A, Seebach J A. Counterexamples in topology[M]. New York: ,Springer-Verlag, 1978.
  • 5张丽丽,李生刚.关于强F紧集[J].西北大学学报(自然科学版),2001,31(6):465-468. 被引量:4

共引文献12

同被引文献21

  • 1Arhangel sidi A V. Relative topological properties and relative topological space [ J]. Topology Appl., 1996, 70: 87-- 99.
  • 2Arhangel 'skii A V, Gordlenko I Y. Relative symmetrlzability and metrizability [J]. Comment. Math. Univ. Carolinae, 1996, 37 (4) : 757--774.
  • 3Matreev M V, Parlor O I, Tartir K. On relatively normal spaces, relatively regular spaces, and on relative property(ct) [J]. Topology Appl., 1999, 93: 121--129.
  • 4Liu Y M, Luo M K. Fuzzy topology [ M]. Singapore: World Scientific Publishing, 1997.
  • 5Engelking R. General topology [ M ]. Warszawa: Polish Scientific Publisher, 1977.
  • 6Srivastava R, Srivastava M. On compactness in bifuzzy topological spaces [ J ]. Fuzzy Sets and Systems,2001,121 (2): 285 --292.
  • 7Kim Y M. Pairwise compactness[ J]. Publ. Math. Debrecen , 1968, 15: 87-90.
  • 8Safiya M K, Fora A A, Warner M W. Compactness and weakly induced bifuzzy topological spaces [ J ]. Fuzzy Sets And Systems, 1994, 62 : 89-96.
  • 9陈兆利.L-拓扑空间的多种正则分离性及其关系[D].扬州:扬州大学,2011.
  • 10熊金成.点集拓扑讲义[M].3版.北京:高等教育出版社,2003.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部