期刊文献+

离群点删除算法的研究 被引量:3

The Research on Algorithm for Outliers
下载PDF
导出
摘要 逆向工程中在对实体扫描时,由于测量过程受到人为或环境等因素的影响,会引入离群点,即离主体点云较远的小片点云和离散点。离群点的存在,会影响后续的建模质量,所以必须除去这些离群点。因此提出了两种删除离群点的算法,一种是自动删除离群点的算法,另一种是OpenGL框选拾取算法。通过实验证明这两种算法均能有效地删除离群点。 Scanning the entity in reserve engineering, some outliets can be imported into the reql point cloud, which caused by human and environment factors. The outliers include scrap point cloud and single point which are far from the main body point cloud. The outliers can affect the quality of reconstruction of model, which should he deleted. According to that, two algorithms of outliers deletion are given, one algorithm is that deleting the outliers automatically, the other one is that deleting the outliers by OpenGL. Experiments show the efficient deletion by two algorithms.
出处 《装备制造技术》 2008年第7期13-15,共3页 Equipment Manufacturing Technology
关键词 逆向工程 离群点 点云 reserve engineering outliers point cloud
  • 相关文献

参考文献4

二级参考文献20

  • 1汤彬,伍建青.使用MFC的OpenGL编程技术[J].实验室研究与探索,2004,23(9):53-56. 被引量:7
  • 2[美]RichardWright MichaelSweet.OpenGL超级宝典(第2版)[M].北京:人民邮电出版社,2001..
  • 3费广正 芦丽丹 等.可视化OpenGL程序设计[M].北京:清华大学出版社,2001..
  • 4SwrightR SweetM 潇湘工作室译.OpenGL超级宝典(第二版)[M].北京:人民邮电出版社,2001..
  • 5孙恒 陈作模.机械原理[M].北京:高等教育出版社,2001.366-369.
  • 6Woo M,Neider J,Davis T,et al.Open GL编程权威指南[M].吴斌译.北京:中国电力出版社,2000.
  • 7Divid J K.Visual C++技术内幕(第4版)[M].潘爱民译.北京:清华大学出版社,2002.
  • 8Han Jia-Wei,Kamber Micheline Data Mining:Concepts and Techniques (2nd Edition).San Francisco:Morgan Kaufmann Publishers,2006
  • 9Hawkins D.Identification of Outliers.London:Chapman and Hall,1980
  • 10Knorr E,Ng R.Algorithms for mining distance-based outliers in large datasets//Proceedings of the 24th VLDB Conference.New York,1998:392-403

共引文献107

同被引文献26

  • 1李自勤,李琦,王骐.由统计特性分析激光主动成像系统图像的噪声性质[J].中国激光,2004,31(9):1081-1085. 被引量:27
  • 2马磊,彭国华,耿东芳.基于八叉树的海量测量数据的非均匀简化[J].计算机应用,2007,27(8):2027-2029. 被引量:7
  • 3Pinkall U, Polthier K. Computing discrete minimal surfaces and their conjugates [J]. Experimental Mathematics, 1993, 2(1) 15-36.
  • 4Li B, Schnabel R, Klein R, et al. Robust normal estimation for point clouds with sharp features[J]. Computers & Graphics, 2010, 34(2): 94-106.
  • 5Grimm C, Smart W D. Shape classification and normal estima- tion for non-uniformly sampled, noisy point data[J]. Computers & Graphics, 2011, 35(4): 904-915.
  • 6Hoppe H, DeRose T, Duchamp T, et al. Surface reconstruction from unorganized points[C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 1992:71-78.
  • 7Jones T R, Dttrand F, Desbrtm M. Non-iterative feature-pre- serving mesh smoothing[J]. ACM Transactions on Graphics, 2003, 22(3): 943-949.
  • 8Taubin G. A signal processing approach to fair surface de- sign[C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 1995: 351-358.
  • 9Alexa M, Behr J, Cohen-Or D, et al. Point set surfaces[C]// Proceedings of the Conference on Visualization. Los Alamitos: IEEE Computer Society Press, 2001:21-28.
  • 10GROSS M,DFISTER H.Point-based Graphics[M].Berlin:Morgan Kaufmann Publishers,2007.

引证文献3

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部