期刊文献+

基于小世界模型动态演化邻域的微粒群算法 被引量:6

Particle Swarm Optimization with Dynamic Evolutionary Neighbourhood of Small-world Model
下载PDF
导出
摘要 分析了影响网络中信息传播的主要因素,并结合小世界网络的形成机制,提出了一种具有动态邻域结构的微粒群算法。该算法初始化群体拓扑结构为"聚集系数大,平均最短路径长"的环形规则网络,以降低邻域间信息交流的速度,保持种群的多样性。在算法进化过程中,当邻域多样性小于给定阈值时,以小概率向网络随机增加长距离边,逐步形成"聚集系数大,平均最短路径小"的小世界网络,加快邻域间信息交流的速度。仿真结果表明,结合适当的惯性策略,该算法能获得更好的收敛性能和收敛速度。 The major factors influencing information transmission in networks were analyzed.Combined with small-world network formation mechanism, a novel particle swarm optimization with dynamic neighbourhood structure was proposed. In this algorithm, the population topology is initialized as regular ring lattice of "high clustering coefficient, long average path length", to slow down the information exchange between different neighbourhoods and maintain the diversity of the population. In evolution process, while neighbourhood diversity is smaller than the threshold value, long-distance edges are added into networks with a small probability, gradually small-world network of "high clustering coefficient, short average path length" is formed, and the information exchange between neighborhoods is speeded up. Experimental simulations show that with appropriate inertial strategy, the proposed method can obtain better convergence performance and convergence rate.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第15期3940-3943,3947,共5页 Journal of System Simulation
基金 国家自然科学基金项目(60674104)
关键词 微粒群算法 小世界模型 邻域结构 动态演化 particle swarm optimization small-world model neighbourhood structure dynamic evolution
  • 相关文献

参考文献13

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization [C]// Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia. Piseataway, NJ: IEEE Press, 1995, Ⅳ: 1942-1948.
  • 2Suganthan P N. Particle Swarm Optimiser with Neighbourhood Operator[C]// Proceedings of the IEEE International Congress on Evolutionary Computation, Washington, USA. Piscataway, NJ: IEEE Press, 1999, Ⅲ: 1958-1962.
  • 3Kennedy J, Mendes R. Population structure and particle swarm performance [C]// Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu, Hawaii USA. Piscataway, NJ: IEEE Press, 2002: 1671-1676.
  • 4Richards M, Ventura D. Dynamic sociometry in particle swarm optimization [C]// International Conference on Computational Intelligence and Natural Computing, Cary, North Carolina, USA. USA: Association for Intelligent Machinery, 2003: 1557-1560.
  • 5Liang J J, Suganthan P N.Dynamic Multi-Swarm Particle Swarm Optimizer [C]// Proceedings of the IEEE International Swarm Intelligence Symposium, California, USA. USA: IEEE, 2005: 124- 129.
  • 6Mohais A S, Mendes R, Ward C, Posthoff C. Neighborhood Re- Structuring in Particle Swarm Optimization [C]// NAustralian Conference on Artificial Intelligence. Heidelberg, Germany: Springer Berlin, 2005: 776-785.
  • 7Mendes R. Population Topologies and Their Influence in Particle Swarm Performance [D]. Lisbon, Portugal: University of Minho, 2004.
  • 8Watts D J, Strogatz S H. Collective dynamics of small-world networks [J]. Nature (S0028-0836), 1998, 393(4): 440-442.
  • 9Newman M E J, Watts D L Renormalization group analysis of the small-world network model [J]. Physics Letter A (S0375-9601), 1999, 263 (4) :3 41-346.
  • 10覃森,戴冠中,王林.节点数固定的复杂网络模型初探[J].复杂系统与复杂性科学,2005,2(2):7-12. 被引量:8

二级参考文献34

  • 1[7]Dorogovtsev S N, Mendes J F F. Evolution of networks[ J]. Adv in Phys, 2002,51:1 079 -1 187.
  • 2[8]Watts D J, Strogatz S H. Collective dynamics of ‘small-world' networks[J]. Nature, 1998, 393(6): 440 -442.
  • 3[9]Masuda N, Konno N. Transmission of severe acute respiratory syndrome in dynamical small-world networks[ J]. Phys Rev E,2004,69( 3 ) :031917.
  • 4[10]Zanette D H. Dynamics of rumor propagation on small-world networks[ DB/OL]. arXiv:0110324,2001.
  • 5[11]Wang X F, Chen G R. Complex networks: small-world, scale-free and beyond[ J]. IEEE circuits and systems magazine,2003,3(1) :6 -20.
  • 6[12]Dorogovtsev S N, Mendes J F F. Evolution of Network: From Biological Nets to the Internet and WWW[ M ]. London: Oxford University Press, 2003.
  • 7[13]Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks[ J]. Nature, 2000, 407:651 -654.
  • 8[14]Kleinberg J, Lawrence S. The structure of the web[J]. Science, 2001, 294:1 849 - 1 850.
  • 9[15]Strogatz S H. Exploring complex networks[J]. Nature, 2001 (8) ,410:268 - 276.
  • 10[16]Newman M E J, Moore C, Watts D J, Mean-field solution of the small-world network medol [ J ]. Phys Rev Lett,2000 (4),84(14) :3 201 -3 204.

共引文献15

同被引文献68

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部