期刊文献+

水下机器人的S型模糊神经网络控制 被引量:2

S Model Fuzzy Neural Network Control of Underwater Vehicles
下载PDF
导出
摘要 模糊神经网络控制已经成功应用于水下机器人运动控制中,但其运算过程和训练算法比较复杂,对嵌入式硬件要求也较高。根据带翼水下机器人的运动特性提出了S型模糊神经网络控制方法,并推导了网络权值学习算法,最后以XX水下机器人为研究对象进行了仿真实验。试验结果表明,与基于高斯型隶属函数的模糊神经网络控制器相比,在没有过多损失整体控制品质的情况下,其网络算法得到极大简化,运算速度得到了提高,反应能力增强,非常适用于对精确定位能力和运动速度要求不高,但要求高机动性的水下机器人。 Gauss membership function-based fuzzy neural network (FNN) is proved to be effective in motion control of underwater vehicles. However, its operational process and the training algorithm are complicated, placing great demands on embedded hardware. S model FNN was proposed according to the moving characters of underwater vehicles with wings. The learning algorithm was developed. The simulation results show that the modified FNN has simpler algorithm, higher calculation speed and improved response, compared with Gauss membership function-based FNN. It is applicable for the underwater vehicle which doesn't need to have the ability of accurate positioning but must have good maneuverability.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第15期4118-4121,共4页 Journal of System Simulation
基金 水下智能机器人技术国防科技重点实验室开放课题研究基金资助(2007001)
关键词 水下机器人 模糊神经网络控制 S隶属函数 运动控制 underwater vehicle fuzzy neural network control S membership function motion control
  • 相关文献

参考文献5

二级参考文献23

  • 1A Д亚历山大洛夫等 王元等(译).数学--它的内容、方法和意义,第三卷[M].北京:科学出版社,1962..
  • 2Chert C L, Chang F Y. Design and analysis of neural/fuzzy variables Cuctural PID control systems [J]. IEEE Pro-Control Theory Application, 1993, 43(2): 200-208.
  • 3Lin C T, Lin C. Fuzzy adaptive learning control network with on-line neural learning [J]. Fuzzy sets and systems, 1995, 171: 25-45.
  • 4Garcia S M, Guillen J C. Robust controller design for uncertain systems with variable time delay [J]. Control engineering practice,2000, (9): 961-972.
  • 5Narendra K S, Parthasarathy K. Identification and Control of Dynamic Systems Using Neural Networks [J]. IEEE Trans. neural networks, 1990, 1(1): 4-27.
  • 6Narendra K S. Neural Networks for Control: Theory and Practice [A]. Proc. of The IEEE [C]. 1996, 84(10): 1385-1406.
  • 7Cabrera J B D, Narendra K S. Issues in the Application of Neural Networks for Tracking Based on Inverse Control [J]. IEEE Trans., automatic control, 1999, 44(11): 2007-2027.
  • 8Narendra K S, Mukhopadhyay S. Adaptive Control Using Neural Networks and Approximate Models [J]. IEEE Transactions on Neural Networks, 1997, 8(3): 475-485.
  • 9侯忠生.非参数模型及其自适应控制理论[M].北京:科学出版社,1998..
  • 10Tan K K, Lee T H, Huang S N, Leu F M. Adaptive Predictive Control of a Class of SISO Nonlinear Systems [J]. Dynamics and Control, 2001, 11(2): 151-174.

共引文献112

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部