期刊文献+

分布式数据库保持隐私挖掘方法 被引量:2

Implementation for privacy-preserving distributed mining
下载PDF
导出
摘要 隐私保护是当前数据挖掘领域中一个十分重要的研究问题,其目标是要在不精确访问真实原始数据的条件下,得到准确的模型和分析结果。为了提高对隐私数据的保护程度和挖掘结果的准确性,提出一种基于RSA算法的隐私保护挖掘方法。介绍了公共密钥加密算法RSA的概念,证明了RSA算法的可交换性和加密结果惟一性。然后采用RSA算法,引入了计算中心和混合中心,对原始数据进行了变换和隐藏,实现了保持隐私数据挖掘。最后,对算法的安全性、公平性、有效性和复杂度进行了分析。 Privacy preservation is one of the most important topics in data mining field. The purpose is to discover accurate patterns without precise access to the original data. In order to improve the privacy preservation and mining accuracy, an effective method based RSA for privacy data mining is presented. First, the interchange ability and the exclusive of RSA algorithm are proved out, Then, the two co-workers, computation center and mix center, are introduced to transform and hide original data, In this approach, a highefficient implementation forprivacy-preserving mining is presented. In the end, analysis in security, fairness, validity, efficiency and complexity are carried on.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第14期3684-3686,共3页 Computer Engineering and Design
基金 河北省自然基金项目(F2007000682 F2005000515)
关键词 公共密钥加密算法 数据挖掘 隐私保持 分布式数据库 安全性 RSA data mining privacy-preserving distributed database security
  • 相关文献

参考文献8

  • 1Han J W, Kamber M.Data mining[M].San Francisco,CA,2001: 10-11.
  • 2Du W, Atallah M J.Secure multi-party computation problems and their application [C]. New Mexico, USA: A Review and Open Problems,2001:11-13.
  • 3Kantarcioglu M, Clifton C. Privacey-preserving distributed mining rules on horizontally partitioned data[C].Alberta,Canada: DMKD,2002:14-17.
  • 4Kantarcioglu M, Clifton C. Privacey-preserving distributed mining rules on vertically partitioned data [C]. Alberta, Canada: DMKD,2002:24-27.
  • 5Agrawal D,Aggarwal CC.On the design and quantification of privacy preserving data mining algorithms [C]. Santa Barbara, California,USA:Proceedings of the 20th Symposium on principles of Database Systems,2001:34-42.
  • 6Agrawal R,Srikant R.Privacy preserving data mining[C].Dallas, Texas, USA: ACM SIGMOD Conference on Management of Data,2000:439-450.
  • 7符燕华,顾嗣扬.基于垂直型分布数据的隐私性保持关联规则挖掘[J].计算机应用,2006,26(1):213-215. 被引量:3
  • 8宋宝莉,覃征.分布式环境下关联规则的安全挖掘算法[J].计算机工程,2006,32(21):35-37. 被引量:6

二级参考文献16

  • 1宋宝莉,覃征.分布式全局频繁项目集的快速挖掘方法[J].西安交通大学学报,2006,40(8):923-927. 被引量:11
  • 2Evfimievski A, Sfikant R, Agrawal R, et al. Privacy preserving mining of association rules[A]. Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery in Database and Data mining[C]. Edmonton, Alberta, Canada, 2002. 217 -228.
  • 3RIZVI SJ, HARITSA JR. privacy-preserving association rule mining[A]. Proceedings of 28th International Conference on Very large Data Bases. VLDB[C]. 2002.
  • 4LINDELL Y, PINKAS B. Privacy preserving data mining[A]. In Advances in Cryptology - CRYPTO 2000[C]. Springer-Verlag,2000.36 - 54.
  • 5OLIVEIRA SRM, ZMANE OR, Privacy preserving frequent itemset mining[A]. Proceedings of the IEEE ICDM Workshop on Privdcy,Security and Data Mining[C]. Maebashi City, Japan, 2002.43-54.
  • 6RIZVI S J, HARITSA JR. Maintaining data privacy in association rule mining[A]. Proceedings of the 28th International Conference on Very Large Databases[C]. 2002.
  • 7CLIFTON C, KANTARCIOGLOU M, LIN XD, et al. Tools for privacy preserving distributed data mining[J]. SIGKDD Explorations,2002, 4(2) : 28 - 34.
  • 8AGRAWAL D, AGGARWAL CC. On the design and quantification of privacy preserving data mining algorithms[A]. Proceedings of the 20th ACM Symposium on Principles of Database Systems[C]. 2001.247 - 255.
  • 9AGRAWAL D, AGGARWAL CC. On the design and quantification of privacy preserving data mining algorithms[A]. Proceedings of the 20th Symposium on principles of Database Systems[C]. Santa Barbara, California, USA, 2001.
  • 10AGRAWAL R, SRIKANT R. Privacy preserving data mining[A].ACM SIGMOD Conference on Management of Data[C]. Dallas,Texas, 2000.439-450.

共引文献7

同被引文献10

  • 1崔贯勋,朱庆生.一种改进的基于密度的离群数据挖掘算法[J].计算机应用,2007,27(3):559-560. 被引量:8
  • 2Verykios V S,Bertino E,Fovino I N,et al.State-of-the-art in privacy preserving data mining[C].New York,NY,USA:ACM SIGMOD Record,2004:50-57.
  • 3Vaidya J,Clifton C.Privacy-preserving outlier detection[M].Brighton,UK:The Fourth IEEE International Conference on Data Mining,2004:1-4.
  • 4Zhou Zhengyou,Huang Liusheng,Wei Yang,et al.Privacy preserving outlier detection over vertically partitioned date[C].Wuhan,China:The International Conference on E-Business and Information System Security,2009:23-24.
  • 5Yu Y,Leiwo J,Premkumar B.A study on the security of privacy homomorphism[C].Washington,DC,USA:The Third Intemational Conference on Information Technology,2006:470-475.
  • 6Mark Shaneck,Yongdae Kim.Privacy preserving nearest neighbor search[C].Brighton,UK:The Sixth IEEE International Conference on Data Mining,2006:541-545.
  • 7Chris Clifton,Murat Kantarcioglu,Lin Xiaodong,et al.Tools for privacy preserving distributed data mining[J].SIOKDD Explorations,2003,4(2):28-34.
  • 8周水庚,李丰,陶宇飞,肖小奎.面向数据库应用的隐私保护研究综述[J].计算机学报,2009,32(5):847-861. 被引量:221
  • 9王茜,曾子平.(p,a)-sensitivek-匿名隐私保护模型[J].计算机应用研究,2009,26(6):2177-2179. 被引量:7
  • 10胡翔天,宫秀军,陈海亮.基于OLA的K匿名算法的改进[J].微型机与应用,2011,30(22):68-71. 被引量:2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部