期刊文献+

基于DOG的异常行为监测模型的设计

Detection model of abnormal behavior based on DOG
下载PDF
导出
摘要 为了在监控系统中识别行人的动作,提出了一种用于异常行为预测和检测的实时视频监控系统模型,模型基于动态有向图(DOG)进行实时无人监控。通过单向连接点结构方式来描述观测行为,其中每个点定义了被观测的运动物体在标准属性多维空间的区域,并对产生异常行为的人确定可能性。实验结果表明,该方法能够成功跟踪运动的目标并区分其行为类型,跟踪效果可靠、精确。 In order to identify pedestrian movement in monitoring system, an abnormal behavior analysis module of the system is presented, using real-time unsupervised. It called dynamic oriented graph (DOG) is used to predict and detect abnormal behaviors. The DOG method characterizes observed actions by a structure of unidirectional connected nodes, each one node defining a region in the hyperspace of attributes measured from the observed moving objects and having assigned a probability to generate an abnormal behavior. Experimental result show that the DOG method can track successfully moving objects, and it is robust and accurate.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第14期3815-3817,共3页 Computer Engineering and Design
基金 河北省教育厅科研基金项目(2005361)
关键词 异常行为 动态有向图 单向连接点 视频跟踪 动态分类器 abnormal behavior dynamic oriented graph unidirectional connected nodes video tracking dynamic classifier
  • 相关文献

参考文献9

  • 1Ghallab M.On chronicles:Representation,on-line recognition and leaming[C].Cambridge:5th International Conference on Principles of Knowledge Representation and Reasoning,1999:597-606.
  • 2Mecocci A, Pannozzo M, Fumarola A. Automatic detection of anomalous behavioural events for advanced real-time video surveillance[J].International Symposium on Computational Intelligence for Measurement Systems and Applications,Lugano,2003 (6):187-192.
  • 3Duque D, Santos H, Cortez P.N-ary trees classifier[C].Setubal, Portugal'Proceedings of the 3rd International Conference on Informatics in Control, Automation and Robotics,2006:305-309.
  • 4Duque D,Santos H, Cortez P.Prediction of abnormal behaviors for intelligent video surveillance systems[C].Proceedings of the 2007 1EEE Symposium on Computational Intelligence and Data Mining(CIDM 2007),2007:362-367.
  • 5Tao Zhao,Ram Nevatia.Tracking multiple humans in complex situations[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(9):256-260.
  • 6Chen Yufeng,Liang Guoyuan,Ka Keung Lee,et al.Abnormal behavior detection by multi-SVM-based bayesian network[C]. Jeju City, Korea:Proceedings of the 2007 International Conference on Information Acquisition,2007:298-303.
  • 7Zhou Ziheng,Adam Prugel-Bennett,Robert I Damper.A bayesian framework for extracting human gait sing strong prior knowledge[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28:1738-1752.
  • 8Comaniciu D,Ramesh V, Meer P.Kernel-based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2003, 25(5):564-577.
  • 9Arie J B,Wang Z,Pandit P, et al.Human activity recognition using multidimensional indexing[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(8): 1091-1104.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部