期刊文献+

基于最小二乘支持向量机的船舶操纵运动建模 被引量:17

Modeling of Ship Manoeuvring Motion Using Least Squares Support Vector Machines
下载PDF
导出
摘要 基于自由自航船模试验或实船试验的系统辨识方法是一种确定船舶操纵运动水动力导数的有效方法。通过对舵角、漂角、转首角速度等试验数据的分析,用最小二乘支持向量机确定了船舶操纵运动数学模型中的水动力导数及其干扰力系数,其中非线性模型的参数辨识采用了多项式核函数。利用辨识得到的参数进行了操纵运动预报仿真并同自航模试验及实船试验数据对比,数值仿真结果验证了方法的有效性。 System identification combined with free-running model tests or lull-scale trials is one ot the effective methods to determine the hydrodynamic derivatives in the mathematical models of ship manoeuvring motion. By analyzing the available data including rudder angles, drift angles and yaw rates, a method based on least squares support vector machines for determining the hydrodynamic derivatives and disturbance coejjicients was proposed. Polynomial kernel function was adopted while identifying the parameters in the nonlinear model. Predictions of manoeuvring motion were proposed using the parameters identified. The results of identification and simulation demonstrate the validity of the identification algorithm proposed.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第13期3381-3384,共4页 Journal of System Simulation
基金 国家自然科学基金项目(10572094) 高等学校博士学科点专项科研基金项目(20050248037)
关键词 支持向量机 系统辨识 数学模型 船舶操纵性 support vector machines system identification mathematical model ship manoeuvrability
  • 相关文献

参考文献10

  • 1International Maritime Organization (IMO). A. 751(18), Interim Standards for Ship Manoeuvrability [S]. 1993.
  • 2International Maritime Organization (IMO). MSC. 137(76), Standards for Ship Manoeuvrability [S]. 2002.
  • 3贾欣乐,杨盐生.船舶运动数学模型一机理建模及辨识建模[M].大连:大连海事大学出版社,1999
  • 4张孝双,彭秀艳,赵希人.基于神经网络方法的船舶姿态运动极短期预报与仿真[J].系统仿真学报,2002,14(5):641-642. 被引量:15
  • 5杨雪晶,赵希人,王显峰.基于神经网络的船舶运动建模及随机最优控制[J].系统仿真学报,2007,19(2):372-375. 被引量:4
  • 6Mahfouz A B, Haddara M R. Effect of the damping and excitation on the identification of the hydrodynamic parameters for an underwater robotic vehicle [J]. Ocean Engineering (S0029-8018), 2003, 30(8): 1005-1025.
  • 7Vapnik.统计学习理论[M].张学工,译.北京:电子工业出版社,2004.
  • 8Suykens J A K, De Brabanter J, Lukas L, et al. Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing, Special issue on fundamental and information processing aspects of neurocomputing (S0925-2312), 2002, 48(1-4): 85-105.
  • 9Astrom K J, Kallstrom C G. Identification of ship steering dynamics [J]. Automatica (S0005-1098), 1976, 12(1): 9-22.
  • 10Kobayashi H. The Specilaist Committee on Esso Osaka, Final Report and Recommendations to the 23rd ITTC[R]. Venice, Italy: International Towing Tank Conference (ITTC), 2002: 588-590.

二级参考文献6

  • 1赵希人,唐慧妍,彭秀艳,王宪荣.利用航向舵减横摇控制研究[J].系统仿真学报,2005,17(1):174-177. 被引量:12
  • 2焦李成.神经网络的应用与研究[M].西安:西安电子科技大学出版社,1994.1-50.
  • 3Abkowitz M A.Measurement of hydrodynamic characteristics from ship manoeuvring trails by system identification[J].SNAME Transactions (S0081-1661),1980,88:283-318.
  • 4Trankle T L.Identification of T.V.Kings Pointer hydrodynamic model using sea trials inertial data[C]// Prediction of 22nd American Towing Tank Conference,St.John's,Newfoundland,Canada,1989:508-514.
  • 5Yu Jian-xing.Modeling of multi-freedom ship motion in irregular waves with fuzzy neural networks[J].China Ocean Engineering (S0890-5487),2002,17(2):255-264.
  • 6Haddara M R,Wang Yie.Parametric identification of manoeuvring model for ships[J].International Shipbuiding Progress (S0020-868X),1999,46(445):5-27.

共引文献62

同被引文献98

引证文献17

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部